Distributed Objects

Remote Method Invokation

~
J

. . §= ;: Application Facade ’\‘
ZW Coococmcscscscsscsooooeoes
Distributed Systems 85 g)/ oo) e |
= . Workflow J\ Components /| Entities
r
.‘.a " Data Access |/ Data Helpers/ Service
gs \ Components /i Utilities Agents

Ul Components

Data
Sources

Ul Process Components

PRESENTATION
LAYER

Object 1

invoke method

Object 2

Client Host/Process

invoke method

Server Host/Process

Object 1

] Object 2

RMI

A Y
RMI
Server
URL
protocol === == >

Locate remote objects. Applications can use various mechanisms to
obtain references to remote objects. For example, an application
can register its remote objects with RMI's simple naming facility, the
RMI registry. Alternatively, an application can pass and return
remote object references as part of other remote invocations.

Communicate with remote objects. Details of communication
between remote objects are handled by RMI. To the programmetr,
remote communication looks similar to regular Java method
invocations.

Load class definitions for objects that are passed around. Because
RMI enables objects to be passed back and forth, it provides
mechanisms for loading an object's class definitions as well as for
transmitting an object's data.

Distributed Objects

Remote Method Invokation:
How does it work?

The conceptual model

Local — Remote -

Client Host/Process Server Host/Process
Object 1 Object 2
“Post Office” | < > | “Post Office”
socket

Interaction

Local —
Client Host/Proces

Object 1

N\

Stub of Object 2

< - -

-—»

Remote-
Server Host/Process

Object 2

i

Skeleton of Object 2

Local —\
Client Host/P

Remote-
Server Host/Process

roce
Interface
Object 1)
'\\(: A
Stub of Object 2 €~ -f---------~

-—»

Object 2

N

Skeleton of Object 2

Distributed Objects

A “do it yourself” implementation

A “do it yourself’ implementation

1. Person: the interface

package distributedobjectdemo;

public interface Person {

}

public int getAge() throws Throwable;
public String getName() throws Throwable;

package distributedobjectdemo; 2. Person: The class

public class PersonServer implements Person{
int age;
String name;
public PersonServer(String name,int age){
this.age=age;
this.name=name;
hs
public int getAge(){
return age;
bs
public String getName(){
return name;
be
public static void main(String a[]) {
PersonServer person = new PersonServer("Marko", 45);
Person_Skeleton skel = new Person_Skeleton(person);
skel.start();
System.out.printin("server started");

h
H

3. Person: the skeleton

package distributedobjectdemo;
import java.net.Socket;

import java.net.ServerSocket;
import java.io.*;

public class Person_Skeleton extends Thread {
PersonServer myServer;
int port=9000;

public Person_Skeleton(PersonServer server) {
this.myServer=server;

H

// la classe continua...

3. Person: the skeleton

public void run(){
Socket socket = null;
ServerSocket serverSocket=null;

try {
serverSocket=new ServerSocket(port);

he
catch (IOException ex) {

System.err.printin("error while creating serverSocket");
ex.printStackTrace(System.err); System.exit(1);

}

while (true) {

try {
socket=serverSocket.accept();

System.out.printin("Client opened connection”);

he
catch (IOException ex) {

System.err.printin("error accepting on serverSocket");
ex.printStackTrace(System.err); System.exit(1);

H

// il metodo continua...

3. Person: the skeleton

try {
while (socket!=null){

ObjectInputStream instream=
new ObjectInputStream(socket.getInputStream());
String method=(String)instream.readObject();
if (method.equals("age™)) {
int age=myServer.getAge();
ObjectOutputStream outstream=
new ObjectOutputStream(socket.getOutputStream());
outstream.writeInt(age);
outstream.flush();
¥ else if (method.equals("name™)) {
String name=myServer.getName();
ObjectOutputStream outstream=
new ObjectOutputStream(socket.getOutputStream());
outstream.writeObject(name);
outstream.flush();

}
H

/ /prosegue con il catch...

A “do it yourself’ implementation 3. Person: the skeleton

» catch (IOException ex) {
if (ex.getMessage().equals(”"Connection reset")) {
System.out.printin("Client closed connection");
¥} else {
System.err.printin("error on the network");
ex.printStackTrace(System.err); System.exit(2);
bs
¥} catch (ClassNotFoundException ex) {
System.err.printin("error while reading object from the net");
ex.printStackTrace(System.err); System.exit(3);
by
¥/ /fine del ciclo while(true)
¥ //fine del metodo run
¥ //fine della classe

4. Person: the stub

package distributedobjectdemo;
import java.net.Socket;
import java.io.*;

public class Person_Stub implements Person {
Socket socket;
String machine="localhost";
int port=9000;

public Person_Stub() throws Throwable {
socket=new Socket(machine,port);

}

protected void finalize(){
System.err.printin("closing");
try { socket.close(); }

catch (IOException ex) {ex.printStackTrace(System.err); }
bs

// la classe continua...

4. Person: the stub

public int getAge() throws Throwable {
ObjectOutputStream outstream=
new ObjectOutputStream(socket.getOutputStream());
outstream.writeObject("age");
outstream.flush();
ObjectInputStream instream=
new ObjectInputStream(socket.getInputStream());
return instream.readInt();

}

public String getName() throws Throwable {
ObjectOutputStream outstream=new
ObjectOutputStream(socket.getOutputStream());
outstream.writeObject("name");
outstream.flush();
ObjectInputStream instream=
new ObjectInputStream(socket.getInputStream());
return (String)instream.readObject();

}

¥} // fine della classe

5. Person: the client

package distributedobjectdemo;
public class Client {

public Client() {

try {
Person person=new Person_Stub();
int age=person.getAge();
String name=person.getName();
System.out.printin(nhame+" is "+age+" years old");

bs

catch (Throwable ex) {
ex.printStackTrace(System.err);

}

bs
public static void main(String[] args) {
Client clientl = new Client();

¥
}

Open issues

-multiple instances

—Automatic stub and skeleton generation
—on demand server dentification

-on demand remote class activation

Broker

Registry

C (S,

Distributed Objects

An RMI basic implementation

(example taken from
https://www.mkyong.com)

Remote Interface

package it.unitn.rmiinterface; 1. Detine the common interface

import java.rmi.Remote;

import java.rmi.RemoteException;

public interface RMIInterface extends Remote {

public String helloTo(String name) throws RemoteException;

package it.unitn.rmiserver;

The S CIver import java.rmi.Naming;

import java.rmi.RemoteException;

import java.rmi.server.UnicastRemoteObject;

2. Implement the service import it.unitn.RMIInterface;

public class ServerOperation extends UnicastRemoteObject
implements RMIInterface{

private static final long serialVersionUID = 1L;

protected ServerOperation() throws RemoteException {
super();

@Override
public String helloTo(String name) throws RemoteException{

System.err.println(name + " is trying to contact!");
return "Server says hello to " + name;

The Server

import java.rmi.registry.¥*;
LocateRegistry.createRegistry (1099) ;

3. Create Registry

The Server

public static void main(String[] args){

try { 4. Register yourself

Naming.rebind("//localhost/MyServer", new

ServerOperation());
System.err.println("Server ready");
} catch (Exception e) {
System.err.println("Server exception: " +
e.toString());

e.printStackTrace();

package it.unitn.rmiclient

r]?}l 1° import java.net.MalformedURLException
C C 1€ﬁt import java.rmi.Naming

import java.rmi.NotBoundException
import java.rmi.RemoteException
import javax.swing.JOptionPane
import it.unitn.RMIInterface

public class ClientOperation {
private static RMIInterface remoteObj;
public static void main(String[] args)

throws MalformedURLException, RemoteException,
NotBoundException {

S.IQOOqu) remoteObj = (RMIInterface) Naming.lookup("//

The Service localhost/MyServer");

String txt = JOptionPane.showInputDialog("What 1is
your name?");

6. Use Service | String response = remoteObj.helloTo(txt);
JOptionPane.showMessageDialog(null, response);

Deploy

COMPILE:

javac src/it/unitn/rmiinterface/RMIInterface.java src/it/unitn/
rmiserver/ServerOperation.java src/it/unitn/rmiclient/
ClientOperation. java

START REGISTRY
cd src

start rmiregistry

START SERVER
cd src

java it.unitn.rmiserver.ServerOperation

START CLIENT
cd src

java it.unitn.rmiclient.ClientOperation

C:\Users\Public\My Projects\SimpleRMIExample>cd src

C:\Users\Public\} j \Simp cample\src>java com.mkyong.rmiclient.ClientOpera

What is your name?

OK Cancel

CAWINDOWS\system32\cmd.exe - java com.mkyong.rmiserver.ServerOperation — O X

\Users\Public\My Projects\SimpleRMIExample>
rs\Public\My Projects\SimpleRMIExample)

\Public\My Projects\SimpleRMIExample\src>java com.mkyong.rmiserver.ServerOperation

erver Y‘P.—i(f‘)’

Marilena is vying to contact!

(Question

What do you have to change
in the process and in the code
if you run on different machines?

Distributed Objects

An RMI implementation
- VERY IMPORTANT NOTES-

VERY IMPORTANT: Parameter passing

Java Standard:

void f(int x)

Parameter x i1s passed by copy

void g (Object k)

Parameter k and return value are passed by reference

Java RMI:

void h (Object k)

Parameter k is passed by copy!

UNLESS k is a REMOTE OBJECT (in which case it is passed
as a REMOTE REFERENCCE, i.e. its stub is copied if needed)

IMPORTANT: Parameter passing

Passing By-Value

When invoking a method using RMI,all parameters to the
remote method are passed by-value .This means that when a
client calls a server,all parameters are copied from one machine
to the other.

Passing by remote-reference

If you want to pass an object over the network by-reference,it
must be a remote object, and it must implement
java.rmi.Remote.A stub for the remote object is serialized and
passed to the remote host. The remote host can then use that
stub to invoke callbacks on your remote object. There is only
one copy of the object at any time,which means that all hosts
are calling the same object.

Serialization

e Any basic primitive type (int,char,and so on) is automatically
serialized with the object and is available when deserialized.

eJava objects can be included with the serialized or not:

e Objects marked with the transient keyword are not serialized
with the object and are not available when deserialized.

e Any object that is not marked with the transient keyword
must implement java.lang.Serializable .These objects are
converted to bit-blob format along with the original object. If
your Java objects are neither transient nor implement
java.lang.Serializable, a NotSerializable Exception is thrown
when writeObject()is called.

Serialization

e All serializable classes must declare a

private static final field named serial VersionUID

to guarantee serialization compatibility between versions.

If no previous version of the class has been released, then the
value of this field can be any long value, as long as the value is

used consistently in future versions.

private static final long serial VersionUID = 227L;

When not to Serialize

e The object is large. Large objects may not be suitable for
serialization because operations you do with the serialized blob
may be very intensive. (one could save the blob to disk or
transporting the blob across the network)

e The object represents a resource that cannot be reconstructed
on the target machine.Some examples of such resources are
database connections and sockets.

e The object represents sensitive information that you do not
want to pass in a serialized stream..

Distributed Objects

An RMI implementation
- Addendum -

RMI-T1IOP

(m]

RMI-IIOP is a special version of RMI that is compliant with
CORBA.

RMI has some interesting features not available in RMI-
lIOP,such as distributed garbage collection, object
activation and downloadable class files.

EJB and J2EE mandate that you use RMI-IIOP, not RMI.
rmic —iiop generates IIOP stub and tie (instead of stub and
skeleton)

rmic —idl generates OMG IDL

See docs.oracle.com/javase/7/docs/technotes/tools/#rmi

Preparing and executing

NOTES:
sté%ting from Java 2 the skeleton may not

exist (its functionality is absorbed by the
class file).

Starting from Java 5 the rmic functionality
has been absorbed by javac, so the whole
process becomes transparent (but even more
misterious...)

See docs.oracle.com/javase/tutorial/rmi/
for an example of current usage of rmi

Preparing and executing - security

The JDK security model requires code to be
granted specific permissions to be allowed to

perform certain operations.

You need to specify a policy file when you run
your server and client.

grant { permission java.net.SocketPermission "*:1024-65535",
"connect,accept";

permission java.io.FilePermission "c:\\.path.\\", "read"; };

java -Djava.security.policy=java.policy executableClass

Access to system properties

Nota: instead of specifiying a property at
runtime (-D switch of java command), You can
hardwire the property into the code:

-Djava.security.policy=java.policy
System.getProperties () .put (

"java.security.policy",
"jJava.policy") ;

