
Java	
 Annota)on	

Some	
 Predefined	
 Annota)on	

•  @Deprecated	

•  @Override	

•  @SuppressWarnings	
 	

Annota)on	

•  Compiler	
 instruc)ons	

•  Build-­‐)me	
 instruc)ons	

•  Run)me	
 instruc)ons	

At	
 build-­‐)me:	
 	

•  genera)ng	
 source	
 code,	
 (see	
 e.g.	
 hFp://projectlombok.org/)	

•  compiling	
 the	
 source,	
 	

•  genera)ng	
 XML	
 files	
 (e.g.	
 deployment	
 descriptors),	
 	

•  packaging	
 the	
 compiled	
 code	
 and	
 files	
 into	
 a	
 JAR	
 file	
 etc.	
 	

Build	
 tools	
 may	
 scan	
 your	
 Java	
 code	
 for	
 specific	
 annota)ons	
 and	

generate	
 source	
 code	
 or	
 other	
 files	
 based	
 on	
 these	
 annota)ons.	

Example:	
 lombok	

import	
 lombok.AccessLevel;	

import	
 lombok.SeFer;	

import	
 lombok.Data;	

import	
 lombok.ToString;	

	
 	

public	
 @Data	
 class	
 Mountain{	

	
 	
 	
 	
 	
 	
 	
 private	
 final	
 String	
 name;	

	
 	
 	
 	
 	
 	
 	
 private	
 double	
 al)tude,	
 longitude;	

	
 private	
 String	
 country;	

}	

autogenerates:	

•  seFers	

•  geFers	

•  hashCode()	

•  equals(Object)	

•  toString()	

You	
 have	
 to	
 include	
 lombok.jar	
 as	
 library	
 –	
 see	
 .	
 hFp://projectlombok.org/	
 	

Crea)ng	
 your	
 own	
 annota)on	

@interface MyAnnotation {
 String value() default "123";
 String surname();
 int age();
 String[] names();
}

@MyAnnotation(
 surname="Depippis",
 age=33,
 names={"Pluto", "Goofie"}
)
public class MyClass {
…
}

Default	
 name	
 for	
 single	
 argument	
 is	
 "value"	

Annota)on	
 life)me	

import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;

@Retention(RetentionPolicy.RUNTIME)
@interface MyAnnotation {
 String value() default "123";
 String surname();
 int age();
 String[] names();
}

SOURCE
discarded by the compiler.
CLASS
recorded in the class file by the compiler but need not be retained by
the VM at run time.
RUNTIME
recorded in the class file by the compiler and retained by the VM at
run time, so they may be read reflectively.

Annota)on	
 scope	

import java.lang.annotation.ElementType;
import java.lang.annotation.Target;

@Target({ElementType.METHOD})
@interface MyAnnotation {
 String value() default "123";
 String surname();
 int age();
 String[] names();
}

•  ANNOTATION_TYPE	

•  Annota)on	
 type	

declara)on	

•  CONSTRUCTOR	

•  Constructor	
 declara)on	

•  FIELD	

•  Field	
 declara)on	
 (includes	

enum	
 constants)	

•  LOCAL_VARIABLE	

•  Local	
 variable	
 declara)on	

•  METHOD	

•  Method	
 declara)on	

•  PACKAGE	

•  Package	
 declara)on	

•  PARAMETER	

•  Parameter	
 declara)on	

•  TYPE	

•  Class,	
 interface	
 (including	

annota)on	
 type),	
 or	
 enum	

declara)on	

The	
 @Inherited	
 annota)on	
 signals	
 that	
 a	
 custom	

annota)on	
 used	
 in	
 a	
 class	
 should	
 be	
 inherited	
 by	

subclasses	
 inheri)ng	
 from	
 that	
 class.	
 	

Java	
 Reflec)on	

discovering	
 the	
 code…	

The	
 Class	
 class	

represents	
 a	
 class.	

	
 Class	
 c=Class.forName("javax.swing.JFrame");	

	
 Class	
 c=JFrame.class;	

	
 Class	
 c=int.class;	

	

What	
 can	
 we	
 do	
 with	
 it?	

String	
 misteryName=JOp)onPane.showInputDialog(

	
 "Give	
 me	
 the	
 qualified	
 name	
 of	
 a	
 class",null);	

//	
 e.g.:	
 javax.swing.JFrame	

Class	
 mistery=Class.forName(misteryName);	

Object	
 o=mistery.getInstance();	

	

	

Methods	
 of	
 the	
 Class	
 class	

•  String	
 getName(),	

•  getCanonicalName(),	
 	
 	

•  getSimpleName()	

the	
 name	
 is	
 the	
 name	
 that	
 you'd	
 use	
 to	
 dynamically	
 load	
 the	
 class	
 with,	
 e.g.	
 in	

Class.forName	

the	
 canonical	
 name	
 is	
 the	
 name	
 that'd	
 be	
 used	
 in	
 an	
 import	
 statement	
 and	
 uniquely	

iden)fies	
 the	
 class.	
 	

the	
 simple	
 name	
 losely	
 iden)fies	
 the	
 class	

	

name	
 and	
 canonical	
 name	
 are	
 different	
 for	
 inner	
 classes.	

	

	

	

	

see	

hFp://stackoverflow.com/ques)ons/15202997/what-­‐is-­‐the-­‐difference-­‐between-­‐
canonical-­‐name-­‐simple-­‐name-­‐and-­‐class-­‐name-­‐in-­‐jav	

	

java.lang.String	

java.lang.String	

String	

java.u)l.AbstractMap$SimpleEntry	

java.u)l.AbstractMap.SimpleEntry	

SimpleEntry	

Methods	
 of	
 the	
 Class	
 class	

•  boolean	
 isAnnota)on(),	
 isArray(),	

isAnonymousClass(),	
 isPrimi)ve()…	

•  boolean	
 isInstance(Object	
 a)	

•  toString()	

Methods	
 of	
 the	
 Class	
 class	

•  Method	
 getMethod(String	
 s,	
 Class[]	
 ptypes);	
 -­‐	
 also	
 getDeclaredMethod	

•  Method[]	
 getMethods();	
 -­‐	
 also	
 getDeclaredMethods	

•  Constructor	
 getConstructor(Class[]	
 ptypes);	
 -­‐	
 getConstructors()	

•  Field	
 getField(String	
 s);	
 –	
 getFields();	
 	

•  Class	
 getClass(String	
 s);	
 –	
 getClasses()	
 //inner	
 classes	

•  Annota)on	
 getAnnota)on(Class	
 a);	
 –	
 getAnnota)ons()	

•  Class[]	
 getInterfaces()	

•  Class	
 getSuperclass()	

•  Package	
 getPackage()	

note:	
 the	
 "Declared"	
 version	
 is	
 there	
 also	
 for	
 Constructor(s),	
 Field(s),	
 Annota)on(s)	

	

Package,	
 Method,	
 Constructor,	
 Field,	
 Annota)on	
 are	
 in	
 the	
 java.reflect	
 package	

Class:	
 checking	
 for	
 inheritance	

instanceof	
 works	
 on	
 instances,	
 i.e.	
 on	
 Objects.	
 Some)mes	
 you	
 want	
 to	
 work	
 directly	
 with	
 classes.	
 	

In	
 this	
 case	
 you	
 can	
 use	
 the	
 subClass	
 method	
 of	
 the	
 Class	
 class.	
 	

	

	
 	
 	
 	
 Class	
 o=Object.class;	

	
 	
 	
 	
 Class	
 c=Class.forName("javax.swing.JFrame").asSubclass(o);	

this	
 will	
 go	
 through	
 smoothly	
 because	
 JFrame	
 is	
 subclass	
 of	
 Object.	
 	

c	
 will	
 contain	
 a	
 Class	
 object	
 represen)ng	
 the	
 JFrame	
 class.	

	

	
 	
 	
 	
 Class	
 o=JBuFon.class;	

	
 	
 	
 	
 Class	
 c=Class.forName("javax.swing.JFrame").asSubclass(o);	

this	
 will	
 launch	
 a	
 java.lang.ClassCastExcep)on	
 because	
 JFrame	
 is	
 NOT	
 subclass	
 of	
 JBuFon.	
 	

c	
 will	
 not	
 be	
 ini)alized.	

	

	
 	
 	
 	
 Class	
 o=Serializable.class;	

	
 	
 	
 	
 Class	
 c=Class.forName("javax.swing.JFrame").asSubclass(o);	

this	
 will	
 go	
 through	
 smoothly	
 because	
 JFrame	
 implements	
 the	
 java.io.Serializable	
 interface.	
 	

c	
 will	
 contain	
 a	
 Class	
 object	
 represen)ng	
 the	
 JFrame	
 class.	

	

The	
 Field	
 Class	

extends	
 AccessibleObject,	
 implements	

AnnotatedElement	

•  getName()	

•  int	
 getModifiers()	

•  accessory	
 methods	

– getInt/setInt,	
 getBoolean/setBoolean…	

•  isAccessible/setAccessible	

Modifier	
 class	

•  sta)c	
 int 	
 ABSTRACT	

•  sta)c	
 int 	
 FINAL	

•  sta)c	
 int 	
 INTERFACE	

•  sta)c	
 int 	
 NATIVE	

•  sta)c	
 int 	
 PRIVATE	

•  sta)c	
 int 	
 PROTECTED	

•  sta)c	
 int 	
 PUBLIC	

•  sta)c	
 int 	
 STATIC	

•  sta)c	
 int 	
 STRICT	

•  sta)c	
 int 	
 SYNCHRONIZED	

•  sta)c	
 int 	
 TRANSIENT	

•  sta)c	
 int 	
 VOLATILE	

The	
 sets	
 of	
 modifiers	
 are	
 represented	
 as	
 integers	
 with	
 dis)nct	
 bit	
 posi)ons	
 represen)ng	
 different	

modifiers	

	

sta)c	
 boolean	
 methods	
 isSta)c(),	
 isPublic()…	

The	
 Method	
 Class	

•  getName()	

•  Class[]	
 getParameterTypes()	

•  int	
 getModifiers()	

•  Class	
 getReturnType()	

•  Class	
 getExcep)onTypes()	

•  Class	
 getDeclaringClass()	

•  Annota)on	
 getAnnota)on(Class	
 annota)on)	

•  Annota)on[]	
 getDeclaredAnnota)ons()	

•  invoke(Object,	
 Object…)	

Method	
 invoka)on	
 from	
 reflec)on	

Student	
 s=new	
 Student();	

s.enrol(4,"Course");	

	

Class	
 c=Class.forName("reflect.Student");	

Object	
 o=c.newInstance();	

Methods[]	
 ms=c.getMethods();	

//	
 show	
 the	
 user	
 the	
 available	
 methods,	
 and	
 ask	
 him	
 to	

select	
 one	

Method	
 m=c.getMethod("enrol",int.class,	
 	

	
 Class.forName("java.lang.String"));	

m.invoke(o,3,"Course");	

Costructors	

Class	
 Constructor	

	

and	
 methods	
 of	
 the	
 Class	
 class	

•  getConstructor(Class[]	
 parameterTypes)	

•  getConstructors()	

•  getDeclaredConstructors()	

•  getDeclaredConstructor(Class[]	
 parameterTypes)	

work	
 as	
 for	
 methods	
 and	
 has	
 a	
 subset	
 of	
 similar	

methods	

	

	

	

Java	
 Reflec)on	

an	
 example	

Our	
 annota)ons	

package reflect;
import ..;
@Target({ElementType.TYPE})
@Retention(RetentionPolicy.RUNTIME)
public @interface ClassNote {
 String value();
}

package reflect;
import ..;
@Target({ElementType.FIELD})
@Retention(RetentionPolicy.RUNTIME)
public @interface FieldNote {
 String value();
}

package reflect;
import ..;
@Target({ElementType.METHOD})
@Retention(RetentionPolicy.RUNTIME)
public @interface MethodNote {
 String value();
 int par2();
}

Our	
 classes	

package	
 reflect;	

import	
 ..;	

public	
 class	
 Person	
 {	

	
 	
 	
 	
 protected	
 String	
 name;	

	
 	
 	
 	
 public	
 int	
 age;	
 	
 	
 	
 	

	
 	
 	
 	
 @FieldNote("comment")	

	
 	
 	
 	
 public	
 sta)c	
 String	
 	
 company;	

	
 	
 	
 	
 @MethodNote(value="geFer",par2=1)	

	
 	
 	
 	
 public	
 String	
 getName()	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 return	
 name;	

	
 	
 	
 	
 }	

}	

	

package	
 reflect;	

import	
 ..;	

@ClassNote("demo")	

public	
 class	
 Student	
 extends	
 Person{	

	
 	
 	
 	
 @FieldNote("comment")	

	
 	
 	
 	
 private	
 int	
 matricola;	

	
 	
 	
 	

@MethodNote(value="someText",par2=27)	

	
 	
 	
 	
 public	
 int	
 enrol(int	
 course_id,String	
 s)	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 return	
 course_id*10+1;	

	
 	
 	
 	
 }	

}	

The	
 inspector	

package	
 reflectInspector;	
 	

import	
 ..;	

public	
 class	
 Reflect	
 {	

	
 	
 void	
 p(String	
 s)	
 {	
 System.out.println(s);	
 }	

	
 	
 	
 public	
 sta)c	
 void	
 main(String[]	
 args)	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 String	
 misteryName=JOp)onPane.showInputDialog(

	
 	
 	
 "Give	
 me	
 the	
 qualified	
 name	
 of	
 a	
 class",	
 null);	
 //"reflect.Student"	

	
 Class	
 mistery	
 =	
 null;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 try	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 mistery	
 =	
 Class.forName(misteryName);	
 //	
 get	
 the	
 class	

	
 	
 	
 	
 //Object	
 misteriousObj=mistery.newInstance();	
 //	
 this	
 would	
 instan)ate	
 the	
 class	

	
 	
 	
 	
 	
 	
 	
 	
 	
 }	
 catch	
 (ClassNotFoundExcep)on	
 ex)	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ex.printStackTrace();	
 	
 	
 	
 	
 System.exit(1);	

	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	
 	
 	
 	
 	
 	
 	
 new	
 Reflect().discover(mistery);	

	
 	
 	
 }	

}	

Discover	
 info	
 about	
 the	
 class:	
 	

Class	
 methods	

	
 void	
 discover(Class	
 mistery)	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 p("Class	
 name:	
 "	
 +	
 mistery.getSimpleName()	
 +	
 	

	
 	
 "	
 in	
 package:	
 "	
 +	
 mistery.getPackage().getName());	

	
 	
 	
 	
 	
 	
 	
 	
 p("inherits	
 from:	
 "	
 +	
 	
 	
 	
 	
 	

	
 	
 mistery.getSuperclass().getName());	

	
 	
 	
 	
 	
 	
 	
 	
 if	
 (Modifier.isPublic(mistery.getModifiers()))	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 p("The	
 class	
 is	
 public");	

	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	
 	
 	
 	
 	
 	
 	
 getAnnota)onInfo(mistery,	
 	
 	
 	
 	

	
 	
 mistery.getSimpleName());	

	
 	
 	
 	
 	
 	
 	
 	
 p("===================");	

…	

Output:	

Class	
 name:	
 Student	
 in	
 package:	
 reflect	

inherits	
 from:	
 reflect.Person	

The	
 class	
 is	
 public	

===>	
 Annota)ons:	

annota)on	
 reflect.ClassNote	
 for	
 Class	
 Student	

-­‐>	
 name:	
 value	
 value:	
 demo	

-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐	

Instance	
 variables:	
 Field	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 p("===>	
 Instance	
 variables:");	

	
 	
 	
 	
 	
 	
 	
 	
 Field[]	
 vars1	
 =	
 mistery.getFields();	
 //	
 get	
 public	
 fields	

	
 	
 	
 	
 	
 	
 	
 	
 //	
 get	
 non	
 public	
 fields	

	
 	
 	
 	
 	
 	
 	
 	
 Field[]	
 vars2	
 =	
 mistery.getDeclaredFields();	
 	

	
 	
 	
 	
 	
 	
 	
 	
 ArrayList<Field>	
 	
 vars=	

	
 	
 new	
 ArrayList<>(Arrays.asList(vars2));	

	
 	
 	
 	
 	
 	
 	
 	
 vars.addAll(Arrays.asList(vars1));	

	
 	
 	
 	
 	
 	
 	
 	
 for	
 (Field	
 var	
 :	
 vars)	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 p(var.getType().getName()	
 +	
 "	
 "	
 +	
 var.getName());	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 if	
 (Modifier.isPublic(var.getModifiers()))	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 p("the	
 field	
 is	
 public");	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	
 else	
 var.setAccessible(true);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 if	
 (Modifier.isSta)c(var.getModifiers()))	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 p("the	
 field	
 is	
 sta)c");	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 getAnnota)onInfo(var,	
 var.getName());	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 p("-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐");	

	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	
 	
 	
 	
 	
 	
 	
 p("===================");	

OUTPUT	

===>	
 Instance	
 variables:	

int	
 matricola	

===>	
 Annota)ons:	

annota)on	
 reflect.FieldNote	
 	

	
 	
 	
 	
 for	
 Field	
 matricola	

-­‐>	
 name:	
 value	
 value:	
 comment	

-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐	

int	
 age	

the	
 field	
 is	
 public	

-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐	

java.lang.String	
 company	

the	
 field	
 is	
 public	

the	
 field	
 is	
 sta)c	

===>	
 Annota)ons:	

annota)on	
 reflect.FieldNote	
 	

	
 	
 	
 	
 	
 for	
 Field	
 company	

-­‐>	
 name:	
 value	
 value:	
 comment	

-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐	

Methods	

	
 p("===>	
 Methods:");	

	
 Method[]	
 ms	
 =	
 	
 	
 	

	
 	
 	
 	
 mistery.getMethods();	

	
 	
 	
 	
 	
 	
 	
 	
 for	
 (Method	
 m	
 :	
 ms)	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Class	
 retType	
 =	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 m.getReturnType();	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Class[]	
 parTypes	
 =	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 m.getParameterTypes();	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 StringBuilder	
 b	
 =	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 new	
 StringBuilder("");	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 if	
 (Modifier.isPublic	

	
 	
 (m.getModifiers()))	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 b.append("public	
 ");	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 b.append(retType.getName());	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 b.append("	
 ");	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 b.append(m.getName());	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 b.append("(");	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 boolean	
 first	
 =	
 true;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

for	
 (Class	
 t	
 :	
 parTypes)	
 {	

	
 	
 	
 	
 	
 	
 	
 if	
 (!first)	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 b.append(",");	

	
 	
 	
 	
 	
 	
 	
 }	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 b.append(

	
 	
 t.getName());	

	
 	
 	
 	
 	
 	
 	
 first	
 =	
 false;	

}	

b.append(")");	

p(b.toString());	

getAnnota)onInfo(m,	
 	

	
 m.getName());	

p("-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐");	

}	

===>	
 Methods:	

public	
 int	
 enrol(int,java.lang.String)	

===>	
 Annota)ons:	

annota)on	
 reflect.MethodNote	
 	

	
 for	
 Method	
 enrol	

-­‐>	
 name:	
 value	
 value:	
 someText	

-­‐>	
 name:	
 par2	
 value:	
 27	

-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐	

public	
 java.lang.String	
 getName()	

===>	
 Annota)ons:	

annota)on	
 reflect.MethodNote	
 	

	
 for	
 Method	
 getName	

-­‐>	
 name:	
 value	
 value:	
 geFer	

-­‐>	
 name:	
 par2	
 value:	
 1	

-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐	

public	
 void	
 setName(java.lang.String)	

-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐	

public	
 void	
 wait(long,int)	

public	
 void	
 wait(long)	

public	
 void	
 wait()	

public	
 boolean	
 equals(java.lang.Object)	

public	
 java.lang.String	
 toString()	

public	
 int	
 hashCode()	

public	
 java.lang.Class	
 getClass()	

public	
 void	
 no)fy()	

public	
 void	
 no)fyAll()	

How	
 did	
 we	
 get	
 the	
 annota)ons?	

===>	
 Annota)ons:	

annota)on	
 reflect.ClassNote	
 for	
 Class	
 Student	

-­‐>	
 name:	
 value	
 value:	
 demo	

…	

===>	
 Annota)ons:	

annota)on	
 reflect.FieldNote	
 for	
 Field	
 matricola	

-­‐>	
 name:	
 value	
 value:	
 comment	

…	

===>	
 Annota)ons:	

annota)on	
 reflect.MethodNote	
 for	
 Method	
 getName	

-­‐>	
 name:	
 value	
 value:	
 geFer	

-­‐>	
 name:	
 par2	
 value:	
 1	

	

What	
 do	
 Class,	
 Field	
 and	
 Method	
 have	
 in	
 common?	

	

they	
 all	
 implement	
 AnnotatedElement	
 	

	

Exploring	
 the	
 annota)ons	

void	
 getAnnota)onInfo(AnnotatedElement	
 o,	
 String	
 annotatedElementName)	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 Annota)on[]	
 notes	
 =	
 o.getAnnota)ons();	

	
 	
 	
 	
 	
 	
 	
 	
 if	
 (notes.length	
 !=	
 0)	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 p("===>	
 Annota)ons:");	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 for	
 (Annota)on	
 note	
 :	
 notes)	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 p("annota)on	
 "	
 +	
 note.annota)onType().getName()	
 +	
 "	
 for	
 "	
 +	
 	
 	
 	
 	

	
 	
 	
 o.getClass().getSimpleName()	
 +	
 "	
 "	
 +	
 annotatedElementName);	

	
 	
 	
 	
 	
 	
 	
 Method[]	
 ms	
 =	
 note.annota)onType().getMethods();	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 for	
 (Method	
 m	
 :	
 ms)	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 String	
 methodName	
 =	
 m.getName();	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 switch	
 (methodName)	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 case	
 "toString":	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 case	
 "hashCode":	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 case	
 "annota)onType":	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 con)nue;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

===>	
 Annota)ons:	

annota)on	
 reflect.ClassNote	
 for	
 Class	
 Student	

-­‐>	
 name:	
 value	
 value:	
 demo	

===>	
 Annota)ons:	

annota)on	
 reflect.MethodNote	
 for	
 Method	
 getName	

-­‐>	
 name:	
 value	
 value:	
 geFer	

-­‐>	
 name:	
 par2	
 value:	
 1	

Exploring	
 the	
 annota)ons	

	
 	
 	
 	
 	
 	
 	
 	
 	
 try	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 p("-­‐>	
 name:	
 "	
 +	
 methodName	
 +	
 "	
 value:	
 "	
 +	
 (m.invoke(note)));	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	
 catch	
 (
 SecurityExcep)on	
 |	
 	

	
 	
 	
 	
 IllegalAccessExcep)on	
 |	

	
 	
 	
 	
 	
 IllegalArgumentExcep)on	
 |	
 	

	
 	
 	
 	
 Invoca)onTargetExcep)on	
 ex)	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //ex.printStackTrace();	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 p("-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐");	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	
 	
 	
 }	

===>	
 Annota)ons:	

annota)on	
 reflect.MethodNote	
 for	
 Method	
 getName	

-­‐>	
 name:	
 value	
 value:	
 geFer	

-­‐>	
 name:	
 par2	
 value:	
 1	

