Java Annotation

Some Predefined Annotation

e @Deprecated
e @Override
* @SuppressWarnings

Annotation

 Compiler instructions
e Build-time instructions
e Runtime instructions

At build-time:

e generating source code, (see e.g. http://projectlombok.org/)
 compiling the source,

* generating XML files (e.g. deployment descriptors),

e packaging the compiled code and files into a JAR file etc.

Build tools may scan your Java code for specific annotations and
generate source code or other files based on these annotations.

import
import
import
import

ombo
ombo
ombo
ombo

Example: lombok

K.AccesslLevel;

<.Setter; autogenerates:
« Data: e setters

) g e getters
K.ToString; » hashCode()

e equals(Object)
e toString()

public @Data class Mountain{
private final String name;
private double altitude, longitude;
private String country;

You have to include lombok.jar as library — see . http://projectliombok.org/

Creating your own annotation

@Qinterface MyAnnotation {
String value() default "123";
String surname () ;
int age();
String[] names|();

}

@MyAnnotation (
surname="Depippis",
age=33,

names={"Pluto"”, "Goofie"}

)
public class MyClass {

}

Default name for single argument is "value"

Annotation lifetime

import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;

@Retention (RetentionPolicy.RUNTIME)
@Qinterface MyAnnotation {
String value() default "123";
String surname () ;
int age();
String[] names();

SOURCE
discarded by the compiler.
CLASS

recorded in the class file by the compiler but need not be retained by
the VM at run time.

RUNTIME

recorded in the class file by the compiler and retained by the VM at
run time, so they may be read reflectively.

Annotation scope

import java.lang.annotation.ElementType;
import java.lang.annotation.Target;

@Target ({ElementType.METHOD})
@Qinterface MyAnnotation {
String value() default "123";
String surname () ;
int age();
String[] names();

The @Inherited annotation signals that a custom
annotation used in a class should be inherited by
subclasses inheriting from that class.

ANNOTATION_TYPE
* Annotation type
declaration
CONSTRUCTOR
e Constructor declaration
FIELD
* Field declaration (includes
enum constants)
LOCAL _VARIABLE
* Local variable declaration
METHOD
 Method declaration
PACKAGE
e Package declaration
PARAMETER
* Parameter declaration
TYPE
* Class, interface (including
annotation type), or enum
declaration

Java Reflection

discovering the code...

The Class class

represents a class.

Class c=Class.forName("javax.swing.JFrame");
Class c=JFrame.class;

Class c=int.class;

What can we do with it?

String misteryName=JOptionPane.showlnputDialog(
"Give me the qualified name of a class",null);

// e.g.: javax.swing.JFrame

Class mistery=Class.forName(misteryName);

Object o=mistery.getinstance();

Methods of the Class class

String getName(),
e getCanonicalName(),
* getSimpleName()

the name is the name that you'd use to dynamically load the class with, e.g. in
Class.forName

the canonical name is the name that'd be used in an import statement and uniquely
identifies the class.

the simple name losely identifies the class

name and canonical name are different for inner classes.

java.lang.String java.util.AbstractMapSSimpleEntry
java.lang.String java.util.AbstractMap.SimpleEntry
String SimpleEntry

see

http://stackoverflow.com/questions/15202997/what-is-the-difference-between-
canonical-name-simple-name-and-class-name-in-jav

Methods of the Class class

* boolean isAnnotation(), isArray(),
isSAnonymousClass(), isPrimitive()...

* boolean isinstance(Object a)

e toString()

Methods of the Class class

 Method getMethod(String s, Class[] ptypes); - also getDeclaredMethod
 Method[] getMethods(); - also getDeclaredMethods

* Constructor getConstructor(Class[] ptypes); - getConstructors()
* Field getField(String s); — getFields();

e Class getClass(String s); — getClasses() //inner classes

* Annotation getAnnotation(Class a); — getAnnotations()

* Class[] getinterfaces()

* Class getSuperclass()

* Package getPackage()

note: the "Declared" version is there also for Constructor(s), Field(s), Annotation(s)

Package, Method, Constructor, Field, Annotation are in the java.reflect package

Class: checking for inheritance

instanceof works on instances, i.e. on Objects. Sometimes you want to work directly with classes.
In this case you can use the subClass method of the Class class.

Class o=0bject.class;

Class c=Class.forName("javax.swing.JFrame").asSubclass(o);
this will go through smoothly because JFrame is subclass of Object.
c will contain a Class object representing the JFrame class.

Class o=JButton.class;

Class c=Class.forName("javax.swing.JFrame").asSubclass(o);
this will launch a java.lang.ClassCastException because JFrame is NOT subclass of JButton.
c will not be initialized.

Class o=Serializable.class;

Class c=Class.forName("javax.swing.JFrame").asSubclass(o);
this will go through smoothly because JFrame implements the java.io.Serializable interface.
c will contain a Class object representing the JFrame class.

The Field Class

extends AccessibleObject, implements
AnnotatedElement

e getName()
* int getModifiers()
e accessory methods

— getInt/setInt, getBoolean/setBoolean...

e isAccessible/setAccessible

Modifier class

e staticint ABSTRACT

e staticint FINAL

e staticint INTERFACE
e staticint NATIVE

e staticint PRIVATE

e staticint PROTECTED
e staticint PUBLIC

e staticint STATIC

e staticint STRICT
 staticint SYNCHRONIZED
e staticint TRANSIENT
e staticint VOLATILE

The sets of modifiers are represented as integers with distinct bit positions representing different
modifiers

static boolean methods isStatic(), isPublic()...

The Method Class

getName()

Class[] getParameterTypes()

int getModifiers()

Class getReturnType()

Class getExceptionTypes()

Class getDeclaringClass()

Annotation getAnnotation(Class annotation)
Annotation[] getDeclaredAnnotations()
invoke(Object, Object...)

Method invokation from reflection

Student s=new Student();

Class c=Class.forName('"reflect.Student");
Object o=c.newlnstance();
Methods[] ms=c.getMethods();

// show the user the available methods, and ask him to
select one

Method m=c.getMethod("enrol",int.class,
Class.forName("java.lang.String"));

m.invoke(o,3,"Course");

Costructors

Class Constructor

and methods of the Class class

e getConstructor(Class[] parameterTypes)

e getConstructors()

e getDeclaredConstructors()

e getDeclaredConstructor(Class[] parameterTypes)

work as for methods and has a subset of similar
methods

Java Reflection

an example

Our annotations

package reflect;

import ..; package reflect;
@Target ({ElementType.TYPE}) import ..;
@Retention(RetentionPolicy.RUNTIME) @Target({ElementType.METHOD})
public @interface ClassNote { @QRetention(RetentionPolicy.RUNTIME)
String value(); public Q@interface MethodNote {
} String value();
int par2();
package reflect; }
import ..;

@Target ({ElementType.FIELD})

@Retention(RetentionPolicy.RUNTIME)

public @interface FieldNote {
String value();

Our classes

package reflect; package reflect;
import ..; import ..;
public class Person {

protected String name; public class {
public int age; @FieldNote("comment")
@FieldNote("comment") private int matricola;

public static String company;
@MethodNote(value="getter" par2=1) @MethodNote(value="someText",par2=27)

public String getName() { public int enrol(int course_id,String s) {
return name; return course_id*10+1;

The inspector

package reflectinspector;
import ..;
public class Reflect {

public static void main(String[] args) {
String misteryName=JOptionPane.showlInputDialog(
"Give me the qualified name of a class", null); //"reflect.Student"

Class mistery = null;
try {

mistery = Class.forName(misteryName); // get the class

//Object misteriousObj=mistery.newlnstance(); // this would instantiate the class
} catch (ClassNotFoundException ex) {

ex.printStackTrace(); System.exit(1);
}

new Reflect().discover(mistery);

Discover info about the class:
Class methods

void discover(Class mistery) {
p("Class name: " + mistery.getSimpleName() +
"in package: " + mistery.getPackage().getName());
p("inherits from: " +

mistery.getSuperclass().getName());
if (Modifier.isPublic(mistery.getModifiers())) {
p("The class is public");

} Output:

getAnnotatiomnfo(mistery’ Class name: Student in package: reflect
inherits from: reflect.Person

m|Stery-get5|mp|eName()); The class is public
p(":::::::::::::::::::"); ===> Annotations:
annotation reflect.ClassNote for Class Student
-> name: value value: demo

Instance variables: Field

p("===> Instance variables:");

Field[] vars1 = mistery.getFields(); // get public fields

// get non public fields

Field[] vars2 = mistery.getDeclaredFields();

ArrayList<Field> vars=

new ArrayList<>(Arrays.asList(vars2));

vars.addAll(Arrays.asList(varsl));
for (Field var : vars) {
p(var.getType().getName() +

p("the field is public");
} else var.setAccessible(true);

if (Modifier.isStatic(var.getModifiers())) {

p("the field is static");
}

getAnnotationInfo(var, var.getName());

+ var.getName());
if (Modifier.isPublic(var.getModifiers())) {

OUTPUT

===> |nstance variables:

int matricola

===> Annotations:

annotation reflect.FieldNote
for Field matricola

-> name: value value: comment

int age

the field is public

java.lang.String company

the field is public

the field is static

===> Annotations:

annotation reflect.FieldNote
for Field company

-> name: value value: comment

Methods

p("===> Methods:");
Method[] ms =
mistery.getMethods();
for (Method m : ms) {
Class retType =
m.getReturnType();
Class[] parTypes =
m.getParameterTypes();
StringBuilder b =
new StringBuilder("");
if (Modifier.isPublic
(m.getModifiers())) {
b.append("public");
}

for (Class t : parTypes) {

}

if ('first) {
b.append(",

}
b.append(

t.getName());

first = false;

b.append(")");
p(b.toString());

getAnnotationIinfo(m,

b.append(retType.getName());

b.append("");
b.append(m.getName());
b.append("(");

boolean first = true;

m.getName(

");

));

===> Methods:

public int enrol(int,java.lang.String)

===> Annotations:

annotation reflect. MethodNote
for Method enrol

-> name: value value: someText

-> name: par2 value: 27

public java.lang.String getName()

===> Annotations:

annotation reflect. MethodNote
for Method getName

-> name: value value: getter

-> name: par2 value: 1

public void wait(long,int)

public void wait(long)

public void wait()

public boolean equals(java.lang.Object)
public java.lang.String toString()

public int hashCode()

public java.lang.Class getClass()

public void notify()

public void notifyAll()

How did we get the annotations?

===> Annotations:
annotation reflect.ClassNote for Class Student
-> name: value value: demo

===> Annotations:
annotation reflect.FieldNote for Field matricola
-> name: value value: comment

===> Annotations:

annotation reflect. MethodNote for Method getName
-> name: value value: getter

-> name: par2 value: 1

What do Class, Field and Method have in common?

they all implement AnnotatedElement

Exploring the annotations

void getAnnotationInfo(, String annotatedElementName) {
notes = o. ;
if (notes.length !=0) {
p("===> Annotations:");

===> Annotations:
annotation reflect.ClassNote for Class Student

-> name: value value: demo
for (Annotation note : notes) {

p("annotation " + note. .getName() + " for " +

o.getClass().getSimpleName() + " " + annotatedElementName);
Method[] ms = note. .getMethods();
for (Method m : ms) {

String methodName = m.getName();

switch (methodName) {

case "toString": ===> Annotations:

case "hashCode™: annotation reflect. MethodNote for Method getName
case "annotationType: -> name: value value: getter
continue; -> name: par2 value: 1

Exploring the annotations

try {
p("->name: " + methodName + " value: " + (m.invoke(note)));
}catch (SecurityException |
IllegalAccessException |
lllegalArgumentException |
InvocationTargetException ex) {
//ex.printStackTrace();
}
}
o ");
}
} o

===> Annotations:

annotation reflect. MethodNote for Method getName
-> name: value value: getter

-> name: par2 value: 1

