

 Servlets

Servlets
Servlets are modules that extend Java-enabled web servers. For example, a

servlet might be responsible for taking data in an HTML order-entry form
and applying the business logic used to update a company's order
database.

Servlets are to servers what applets are to browsers. Unlike
applets, however, servlets have no graphical user interface.

For a full tutorial, see
https://docs.oracle.com/javaee/7/tutorial/servlets.htm

Servlet Lifecycle

init()

destroy()

service(HttpServletRequest r,
HttpServletResponse p)

Called only the first time a servlet is
loaded into memory!

doGet()

doPost()

doXXX()

Used only when memory is freed

If the Servlet implements SingleThreadModel
there will be no mutithreading

Get vs Post
What are "Get" and "Post"?

Get and Post are methods used to send data to the server:

With the Get method, the browser appends the data onto the URL.
With the Post method, the data is sent as "standard input.“

Why Do I Care?

It's important for you to know which method you are using. The
Get method is the default, so if you do not specify a method, the
Get method will be used automatically.

The Get method has several disadvantages:

p  There is a limit on the number of characters which can be sent to

the server, generally around 100 - 150 characters.

p  Your user will see the "messy codes" when the data is sent.

service()

This code is part of the class HttpServlet
 protected void service (HttpServletRequest req, HttpServletResponse resp)
 throws ServletException, IOException
 {

 String method = req.getMethod ();
 if (method.equals ("GET")) {
 long ifModifiedSince; long lastModified; long now;
 ifModifiedSince = req.getDateHeader ("If-Modified-Since");
 lastModified = getLastModified (req);
 maybeSetLastModified (resp, lastModified);
 if (ifModifiedSince == -1 || lastModified == -1) doGet (req, resp);
 else {
 now = System.currentTimeMillis ();
 if (now < ifModifiedSince || ifModifiedSince < lastModified)
 doGet (req, resp);
 else
 resp.sendError (HttpServletResponse.SC_NOT_MODIFIED);
 }

service()

This code is part of the class HttpServlet
 protected void service (HttpServletRequest req, HttpServletResponse resp)
 throws ServletException, IOException
 {

 String method = req.getMethod ();
 if (method.equals ("GET")) {
 long ifModifiedSince; long lastModified; long now;
 ifModifiedSince = req.getDateHeader ("If-Modified-Since");
 lastModified = getLastModified (req);
 maybeSetLastModified (resp, lastModified);
 if (ifModifiedSince == -1 || lastModified == -1) doGet (req, resp);
 else {
 now = System.currentTimeMillis ();
 if (now < ifModifiedSince || ifModifiedSince < lastModified)
 doGet (req, resp);
 else
 resp.sendError (HttpServletResponse.SC_NOT_MODIFIED);
 }

service()
 } else if (method.equals ("HEAD")) {
 long lastModified;
 lastModified = getLastModified (req);
 maybeSetLastModified (resp, lastModified);
 doHead (req, resp);
 } else if (method.equals ("POST")) {
 doPost (req, resp);
 } else if (method.equals ("PUT")) {
 doPut(req, resp);
 } else if (method.equals ("DELETE")) {
 doDelete(req, resp);
 } else if (method.equals ("OPTIONS")) {
 doOptions(req,resp);
 } else if (method.equals ("TRACE")) {
 doTrace(req,resp);
 } else {
 resp.sendError (HttpServletResponse.SC_NOT_IMPLEMENTED,
 "Method '" + method + "' is not defined in RFC 2068");
 }

 }

A taste of servlet programming-1

public class SimpleServlet extends HttpServlet {
/** Handle the HTTP GET method by building a simple web page.

*/
 public void doGet (HttpServletRequest request,

 HttpServletResponse response) throws
 ServletException, IOException {

 PrintWriter out;
 String title = "Simple Servlet Output";

A taste of servlet programming-2

 // set content type and other response header fields first

 response.setContentType("text/html");
 // then write the data of the response
 out = response.getWriter();

 out.println("<HTML><HEAD><TITLE>");
 out.println(title);
 out.println("</TITLE></HEAD><BODY>");

 out.println("<H1>" + title + "</H1>");
 out.println("<P>This is output from

 SimpleServlet.");
 out.println("</BODY></HTML>");

 out.close();
 }

}

 Forms (a quick overview)

See also:
•  http://www.cs.tut.fi/~jkorpela/forms/
•  http://www.w3schools.com/html/

Forms

Give to the user the possibility to di
send information to the Web server

The FORM tag defines a form and has the following attributes:
• ACTION identifies the processing engine
• ENCTYPE specificies the MIME type used to pass data
to the server (Es. Text/html)

FORM contains the sub-tag:
• several tags for collecting data
• An INPUT tag must be of type SUBMIT for sending the data
• An INPUT can be of tye RESET to cancel all the gathered data

Form - input

 <FORM method="POST" action="/cgi-bin/elabora">

 Scrivi il tuo nome
 <Input type="text" size“=25" maxlength="15“ name=“a”>
 <Input type="submit" value="spedisci">
 <Input type="reset" value="annulla">
</FORM>

Sends a url of type
http://…/cgi-bin/elabora?a=MarcoRonchetti&b=…

Form – input type=“radio”

<FORM method="POST" action="/cgi-bin/elabora">
 Fai la tua scelta:
 <Input type="radio" name="tipo"
 value="auto" checked>Auto
 <Input type="radio" name="tipo"
 value="bus">Bus
 <Input type="radio" name="tipo"
 value="camion">Camion
 <P><Input type="radio" name="colore"
 value="rosso">Rosso
 <Input type="radio" name="colore"
 value="argento" checked>Argento</P>
 <Input type="submit" value="spedisci">
</FORM>

Form – input type=“checkbox” - select

<FORM method="POST" action="/cgi-bin/elabora">
 Fai la tua scelta:
 <Input type="checkbox"
 name="tipo" value="auto" checked>Auto
 <Input type="checkbox"
 name="tipo" value="bus">Bus
 <Input type="checkbox"
 name="tipo" value="camion">Camion
 <P><Select name="colore">
 <option>Rosso
 <option selected>Argento
 </select></P>
 <Input type="submit" value="spedisci">
</FORM>

Form – textarea

<FORM method="POST" action="/cgi-bin/elabora">
 Scrivi i tuoi commenti:
 <Textarea
 name="commenti" rows="4" columns="14">
 Spiega in questo spazio la tua opinione
 </TEXTAREA>
 <Input type="submit" value="via!">
</FORM>

 Example

Esempio: ShowParameters

package coreservlets;
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.util.*;
public class ShowParameters extends HttpServlet {
 public void doGet(HttpServletRequest request HttpServletResponse

response) throws ServletException, IOException {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 String title = "Reading All Request Parameters";
 out.println ("<HTML><HEAD><TITLE>" +title+ “</TITLE></HEAD>"

+
 "<BODY BGCOLOR=\"#FDF5E6\">\n" +
 "<H1 ALIGN=CENTER>" + title + "</H1>\n" +
 "<TABLE BORDER=1 ALIGN=CENTER>\n" +
 "<TR BGCOLOR=\"#FFAD00\">\n" +
 "<TH>Parameter Name<TH>Parameter Value(s)");

Esempio: ShowParameters

 Enumeration paramNames = request.getParameterNames();
 while(paramNames.hasMoreElements()) {
 String paramName = (String)paramNames.nextElement();
 out.print("<TR><TD>" + paramName + "\n<TD>");
 String[] paramValues = request.getParameterValues(paramName);
 if (paramValues.length == 1) {
 String paramValue = paramValues[0];
 if (paramValue.length() == 0) out.println("<I>No Value</I>");
 else out.println(paramValue);
 } else {
 out.println("");
 for(int i=0; i<paramValues.length; i++) {out.println(""

+paramValues[i]); }
 out.println("");
 }
 }
 out.println("</TABLE>\n</BODY></HTML>");
 }

Esempio: ShowParameters

 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 doGet(request, response);
 }
}

Esempio: ShowParameters
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
 <TITLE>A Sample FORM using POST </TITLE>
</HEAD>
<BODY BGCOLOR="#FDF5E6">
<H1 ALIGN="CENTER">A Sample FORM using POST</H1>

<FORM ACTION="/servlet/coreservlets.ShowParameters“

METHOD="POST”>
 Item Number: <INPUT TYPE="TEXT" NAME="itemNum">

 Quantity: <INPUT TYPE="TEXT" NAME="quantity">

 Price Each: <INPUT TYPE="TEXT" NAME="price" VALUE="$">

 <HR>
 First Name: <INPUT TYPE="TEXT" NAME="firstName">

 Last Name: <INPUT TYPE="TEXT" NAME="lastName">

 Middle Initial: <INPUT TYPE="TEXT" NAME="initial">

 Shipping Address:
 <TEXTAREA NAME="address" ROWS=3 COLS=40></TEXTAREA>

Esempio: ShowParameters

 Credit Card:

 <INPUT TYPE="RADIO" NAME="cardType“

VALUE="Visa">Visa

 <INPUT TYPE="RADIO" NAME="cardType"
 VALUE="Master Card">Master Card

 <INPUT TYPE="RADIO" NAME="cardType"
 VALUE="Amex">American Express

 <INPUT TYPE="RADIO" NAME="cardType“

VALUE="Discover">Discover

 <INPUT TYPE="RADIO" NAME="cardType"
 VALUE="Java SmartCard">Java SmartCard

 Credit Card Number:
 <INPUT TYPE="PASSWORD" NAME="cardNum">

 Repeat Credit Card Number:
 <INPUT TYPE="PASSWORD" NAME="cardNum">

 <CENTER><INPUT TYPE="SUBMIT" VALUE="Submit Order"></

CENTER>
</FORM>
</BODY>
</HTML>

 WebApps

(Tomcat configuration)

Static pages

To let Tomcat serve static pages, we must define a “Web
Application”.
That is, in the Tomcat Document Root (by default
$CATALINA_HOME/webapps/) we must create a folder named
after our Web Application (e.g. myApp).

In that “myApp” folder, we MUST create a WEB-INF folder
(that can be empy).

In the myApp folder we can then depost the static html files.
On our Tomcat server, the URL for the hello.html file becomes:
http://machine/port/myApp/hello.html

To actually see the webapp, we might have to restart Tomcat

myApp

hello.html WEB-INF

webapps

web.xml

Static pages

A web.xml file MUST be provided:
<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE web-app
 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application
2.3//EN“
 "http://java.sun.com/dtd/web-app_2_3.dtd">
<web-app>
</web-app>

myApp

hello.html WEB-INF

webapps

web.xml

Servlets
To let Tomcat serve servlet, we need add some info. The compiled servlets (.class) must
be stored in a “classes” directory in WEB-INF.
Moreover, the web.xml file MUST contain at least:
<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE web-app
 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/dtd/web-app_2_3.dtd">
<web-app>
 <servlet-mapping>
 <servlet-name>invoker</servlet-name>
 <url-pattern>/magic/*</url-pattern>
 </servlet-mapping>
</web-app>
The “magic” word is the servlet activation keyword (you can of course customize this word).
To execute the servlet called MyServlet.class, the URL will be:
http://machine/port/myApp/magic/MyServlet

Servlets
The web.xml file CAN contain many additional info.
For instance, it can contain a section defining an alias
name for the servlet:
…
 <servlet>
 <servlet-name>pippo</servlet-name>
 <servlet-class>myServlet</servlet-class>
 </servlet>
…
In such case, the servlet called MyServlet.class
Can be activated ALSO by the URL:
http://machine/port/myApp/magic/pippo

myApp

web.xml

WEB-INF

webapps

classes

MyServlet.class

Servlets
In JEE 7 it is possible to use annotation in place of the web.xml
file

@WebServlet("/report")
public class MoodServlet extends HttpServlet {…}

The state problem
Client

1

Server

+CGI

Data User 1

Data User 2

Data User 3

Client

3

Client

2

?

A typical solution
Client

1

Server

+CGI

Data User 1

Data User 2

Data User 3

Client

3

Client

2

Cookie

Cookie

Cookie

 Cookies

Cookies: what are they
 A Cookie is a small amount of information sent by a servlet to a Web
browser, saved by the browser, and later sent back to the server.

A cookie's value can uniquely identify a client, so cookies are commonly
used for session management.

A cookie has a name, a single value, and optional attributes such as a
comment, path and domain qualifiers, a maximum age, and a version
number.
Some Web browsers have bugs in how they handle the optional attributes,
so use them sparingly to improve the interoperability of your servlets.

Cookies
 Cookies affect the caching of the Web pages
that use them. HTTP 1.0 does not cache pages
that use cookies created with this class.

The Java class “Cookie” does not support the
cache control defined with HTTP 1.1. This class
supports both the Version 0 (by Netscape) and
Version 1 (by RFC 2109) cookie specifications.
By default, cookies are created using Version 0
to ensure the best interoperability

Cookies: why?

To maintain status across a “user session”

To maintan infos across sessions
p Customer identification
p Targeted advertisement
p Elimination of username e password

Attribute summary

String getComment() / void setComment(String s)
 Gets/sets a comment associated with this cookie.

String getDomain() / setDomain(String s)
 Gets/sets the domain to which cookie applies. Normally, cookies are
returned only to the exact hostname that sent them. You can use this
method to instruct the browser to return them to other hosts within the same
domain. Note that the domain should start with a dot (e.g. .prenhall.com),
and must contain two dots for non-country domains like .com, .edu, and .gov,
and three dots for country domains like .co.uk and .edu.es.

Attribute summary

int getMaxAge() / void setMaxAge(int i)
 Gets/sets how much time (in seconds) should elapse before the cookie expires. If you don't
set this, the cookie will last only for the current session (i.e. until the user quits the browser), and
will not be stored on disk. See the LongLivedCookie class below, which defines a subclass of
Cookie with a maximum age automatically set one year in the future.

String getName() / void setName(String s)
 Gets/sets the name of the cookie. The name and the value are the two pieces you virtually
always care about. Since the getCookies method of HttpServletRequest returns an array of
Cookie objects, it is common to loop down this array until you have a particular name, then
check the value with getValue. See the getCookieValue method shown below.

Attribute summary

String getPath() / void setPath(String s)
 Gets/sets the path to which this cookie applies. If you don't specify a path, the cookie is
returned for all URLs in the same directory as the current page as well as all subdirectories. This
method can be used to specify something more general. For example, someCookie.setPath("/")
specifies that all pages on the server should receive the cookie. Note that the path specified
must include the current directory.

boolean getSecure / setSecure(boolean b)
 Gets/sets the boolean value indicating whether the cookie should only be sent over encrypted
(i.e. SSL) connections.

Attribute summary

String getValue() / void setValue(String s)
Gets/sets the value associated with the cookie. Again, the name and the value are the two parts
of a cookie that you almost always care about, although in a few cases a name is used as a
boolean flag, and its value is ignored (i.e the existence of the name means true).

int getVersion() / void setVersion(int i)
 Gets/sets the cookie protocol version this cookie complies with. Version 0, the default,
adheres to the original Netscape specification. Version 1, not yet widely supported, adheres to
RFC 2109.

Placing Cookies in the Response Headers

The cookie is added to the Set-Cookie response header by means of the
addCookie method of HttpServletResponse. Here's an example:

 Cookie userCookie = new Cookie("user", "uid1234");
 response.addCookie(userCookie);

Reading Cookies from the Client

To read the cookies that come back from the client, you call getCookies on the
HttpServletRequest. This returns an array of Cookie objects corresponding to the values that
came in on the Cookie HTTP request header.
Once you have this array, you typically loop down it, calling getName on each Cookie until you
find one matching the name you have in mind. You then call getValue on the matching Cookie,
doing some processing specific to the resultant value. This is such a common process that the
following section presents a simple getCookieValue method that, given the array of cookies, a
name, and a default value, returns the value of the cookie matching the name, or, if there is no
such cookie, the designated default value.

Cookies: examples

Cookie userCookie = new Cookie(“user”,”uid1234”);
userCookie.setMaxAge(60*60*24*365);
response.addCookie(userCookie);

Code to check if the client accepts cookies:
See http://www.purpletech.com/code/src/com/purpletech/servlets/CookieDetector.java

SetCookies

import java.io.*; import javax.servlet.*; import javax.servlet.http.*;
/** Sets six cookies: three that apply only to the current session
 * (regardless of how long that session lasts) and three that persist for an hour
 * (regardless of whether the browser is restarted).
*/
public class SetCookies extends HttpServlet {
 public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 for(int i=0; i<3; i++) {
 // Default maxAge is -1, indicating cookie
 // applies only to current browsing session.
 Cookie cookie = new Cookie("Session-Cookie-" + i,
 "Cookie-Value-S" + i);
 response.addCookie(cookie);

cookie = new Cookie("Persistent-Cookie-" + i,"Cookie-Value-P" + i);
 // Cookie is valid for an hour, regardless of whether
 // user quits browser, reboots computer, or whatever.
 cookie.setMaxAge(3600);
 response.addCookie(cookie);
 }
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 String title = "Setting Cookies";
 out.println (("<HTML><HEAD><TITLE>" +title+ “</TITLE></HEAD>" +
 "<BODY BGCOLOR=\"#FDF5E6\">\n" +"<H1 ALIGN=\"CENTER\">"

 + title + "</H1>\n" +"There are six cookies associated with this page.\n" +
"</BODY></HTML>");
 }
}

SetCookies

import java.io.*; import javax.servlet.*; import javax.servlet.http.*;
/** Creates a table of the cookies associated with the current page. */
public class ShowCookies extends HttpServlet {
 public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 String title = "Active Cookies";
 out.println(("<HTML><HEAD><TITLE>" +title+ “</TITLE></HEAD>" +
 "<BODY BGCOLOR=\"#FDF5E6\">\n" +
 "<H1 ALIGN=\"CENTER\">" + title + "</H1>\n" +
 "<TABLE BORDER=1 ALIGN=\"CENTER\">\n" +
 "<TR BGCOLOR=\"#FFAD00\">\n" +
 " <TH>Cookie Name\n" + " <TH>Cookie Value");

ShowCookies

Cookie[] cookies = request.getCookies();
 Cookie cookie;
 for(int i=0; i<cookies.length; i++) {
 cookie = cookies[i];
 out.println("<TR>\n" +
 " <TD>" + cookie.getName() + "\n" +
 " <TD>" + cookie.getValue());
 }
 out.println("</TABLE></BODY></HTML>");
 }
}

ShowCookies

 Cookies: legal aspects

DIRECTIVE 2009/136/EC (EUROPEAN
PARLIAMENT) 25 November 2009
Third parties may wish to store information on the

equipment of a user, or gain access to information
already stored, for a number of purposes, ranging
from the legitimate (such as certain types of cookies)
to those involving unwarranted intrusion into the
private sphere (such as spyware or viruses). It is
therefore of paramount importance that users be
provided with clear and comprehensive information
when engaging in any activity which could result in
such storage or gaining of access. The methods of
providing information and offering the right to refuse
should be as user-friendly as possible.

DIRECTIVE 2009/136/EC (EUROPEAN
PARLIAMENT) 25 November 2009
Exceptions to the obligation to provide information and

offer the right to refuse should be limited to those
situations where the technical storage or access is
strictly necessary for the legitimate purpose of
enabling the use of a specific service explicitly
requested by the subscriber or user. Where it is
technically possible and effective, in accordance with
the relevant provisions of Directive 95/46/EC, the
user’s consent to processing may be expressed by
using the appropriate settings of a browser or other
application. The enforcement of these requirements
should be made more effective by way of enhanced
powers granted to the relevant national authorities.

Italian regulations
Individuazione delle modalità semplificate per

l’informativa e l’acquisizione del consenso per
l’uso dei cookie - 8 maggio 2014

http://garanteprivacy.it/web/guest/home/

docweb/-/docweb-display/docweb/3118884

Italian regulations
a. Cookie tecnici.

I cookie tecnici sono quelli utilizzati al solo fine

di "effettuare la trasmissione di una
comunicazione su una rete di comunicazione
elettronica, o nella misura strettamente
necessaria al fornitore di un servizio della
società dell'informazione esplicitamente
richiesto dall'abbonato o dall'utente a erogare
tale servizio" (cfr. art. 122, comma 1, del
Codice).

Italian regulations
Essi non vengono utilizzati per scopi ulteriori e

sono normalmente installati direttamente dal
titolare o gestore del sito web. Possono essere
suddivisi in

cookie di navigazione o di sessione, che
garantiscono la normale navigazione e
fruizione del sito wew;

cookie analytics, assimilati ai cookie tecnici
laddove utilizzati direttamente dal gestore del
sito per raccogliere informazioni, in forma
aggregata, sul numero degli utenti e su come
questi visitano il sito stesso;

Italian regulations
cookie di funzionalità, che permettono all'utente

la navigazione in funzione di una serie di
criteri selezionati (ad esempio, la lingua, i
prodotti selezionati per l'acquisto) al fine di
migliorare il servizio reso allo stesso.

Per l'installazione di tali cookie non è richiesto il

preventivo consenso degli utenti, mentre resta
fermo l'obbligo di dare l'informativa ai sensi
dell'art. 13 del Codice, che il gestore del sito,
qualora utilizzi soltanto tali dispositivi, potrà
fornire con le modalità che ritiene più idonee.

Italian regulations
b. Cookie di profilazione.
I cookie di profilazione sono volti a creare profili

relativi all'utente e vengono utilizzati al fine di
inviare messaggi pubblicitari in linea con le
preferenze manifestate dallo stesso
nell'ambito della navigazione in rete. In
ragione della particolare invasività che tali
dispositivi possono avere nell'ambito della
sfera privata degli utenti, la normativa
europea e italiana prevede che l'utente debba
essere adeguatamente informato sull'uso degli
stessi ed esprimere così il proprio valido
consenso.

Italian regulations
2. Soggetti coinvolti: editori e "terze parti”.
Un ulteriore elemento da considerare, ai fini

della corretta definizione della materia in
esame, è quello soggettivo. Occorre, cioè,
tenere conto del differente soggetto che
installa i cookie sul terminale dell'utente, a
seconda che si tratti dello stesso gestore del
sito che l'utente sta visitando (che può essere
sinteticamente indicato come "editore") o di
un sito diverso che installa cookie per il
tramite del primo (c.d. "terze parti").

Italian regulations
Nel momento in cui l'utente accede a un sito

web, deve essergli presentata una prima
informativa "breve", contenuta in un banner a
comparsa immediata sulla home page (o altra
pagina tramite la quale l'utente può accedere
al sito), integrata da un'informativa "estesa",
alla quale si accede attraverso un link
cliccabile dall'utente.

New EU regulation 2018
https://www.agendadigitale.eu/cittadinanza-

digitale/gdpr-tutto-cio-che-ce-da-sapere-per-
essere-preparati/

 Sessions

String sessionID = makeUniqueString();
Hashtable sessionInfoTable = new Hashtable();
Hashtable globalTable = getTableStoringSession();
globalTable.put(sessionID, sessionInfoTable);
Cookie sessionCookie=new Cookie(“SessionID”,sessionID);
sessionCookie.setPath(“/”);
response.addCookie(sessionCookie);

Session tracking using cookies

globalTable

sessionInfoTable

sessionID

info
key

HttpSession Class
 Provides a way to identify a user across more
than one page request or visit to a Web site
and to store information about that user.
The servlet container uses this interface to
create a session between an HTTP client and an
HTTP server. The session persists for a specified
time period, across more than one connection
or page request from the user.
A session usually corresponds to one user, who
may visit a site many times. The server can
maintain a session in many ways such as using
cookies or rewriting URLs.

HttpSession Class
This interface allows servlets to View and
manipulate information about a session, such
as the session identifier, creation time, and last
accessed time Bind objects to sessions, allowing
user information to persist across multiple user
connections.
 When an application stores an object in or
removes an object from a session, the session
checks whether the object implements
HttpSessionBindingListener. If it does, the
servlet notifies the object that it has been
bound to or unbound from the session.

HttpSession session = request.getSession(true);
ShoppingCart cart =

(ShoppingCart)session.getValue(“carrello”); // 2.1
// 2.2 (ShoppingCart)session.getAttribute(“carrello”);
if (cart==null) {

 cart=new ShoppingCart();
 session.putValue(“carrello”,cart); //2.1
//2.2 session.putAttribute(“carrello”,cart);
}
doSomeThingWith(cart);

Session tracking API

public void putValue(String name, Object value); //2.1
public void setAttribute(String name, Object value); //2.2

public void removeValue(String name); //2.1
public void removeAttribute(String name); //2.2

public String[] getValueNames() //2.1
public Enumeration getAttributeNames() //2.2

Session tracking API

public long getCreationTime();
public long getLastAccessdTime();

 milliseconds since midnight, 1.1.1970

public int getMaxInactiveInterval();
public void setMaxInactiveInterval(int sec);

public void invalidate();

Session tracking API

import java.io.*; import javax.servlet.*; import javax.servlet.http.*;
import java.net.*; import java.util.*;
/** Simple example of session tracking. */
public class ShowSession extends HttpServlet {
 public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 String title = "Session Tracking Example";
 HttpSession session = request.getSession(true);
 String heading;
 // Use getAttribute instead of getValue in version 2.2.
 Integer accessCount = (Integer)session.getValue("accessCount");

ShowSession

if (accessCount == null) {
 accessCount = new Integer(0);
 heading = "Welcome Newcomer";
 } else {
 heading = "Welcome Back";
 accessCount = new Integer(accessCount.intValue() + 1);
 }
 // Use setAttribute instead of putValue in version 2.2.
 session.putValue("accessCount", accessCount);

ShowSession

 out.println(("<HTML><HEAD><TITLE>" +title+ “</TITLE></HEAD>" +
 "<BODY BGCOLOR=\"#FDF5E6\">\n" +
 "<H1 ALIGN=\"CENTER\">" + heading + "</H1>\n" +
 "<H2>Information on Your Session:</H2>\n" +
 "<TABLE BORDER=1 ALIGN=\"CENTER\">\n" +
 "<TR BGCOLOR=\"#FFAD00\">\n" +
 " <TH>Info Type<TH>Value\n" +
 "<TR>\n" +" <TD>ID\n" +" <TD>" + session.getId() + "\n" +
 "<TR>\n" +" <TD>Creation Time\n" +
 " <TD>" + new Date(session.getCreationTime()) + "\n" +
 "<TR>\n" +" <TD>Time of Last Access\n" +
 " <TD>" +new Date(session.getLastAccessedTime()) + "\n" +
 "<TR>\n" +" <TD>Number of Previous Accesses\n" +" <TD>" +
 accessCount + "\n" + "</TABLE>\n" +"</BODY></HTML>");
 }

ShowSession

 /** Handle GET and POST requests identically. */

 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 doGet(request, response);
 }
}

ShowSession

No cookies?
URL REWRITING

In forms:

response.encodeURL(myUrl);

SERVLETS:
filtering

Scope Objects
Web
contex
t

ServletContext Web components within web context
servlet.getServletConfig().getServletCo
n text

Session HttpSession Web components handling requests
that belong to a session

Request ServletRequest Web component handling the request

Page PageContext Web component in the JSP page

Main Methods:
Object getAttribute(String name)
void setAttribute(String name, Object
o) Enumeration getAttributeNames()

AOP

The programming paradigms of aspect-oriented programming
(AOP), and aspect-oriented software development (AOSD)
attempt to aid programmers in the separation of concerns,
specifically cross-cutting concerns, as an advance in
modularization.

Logging and authorization offer two examples of crosscutting
concerns:
a logging strategy necessarily affects every single logged part
of the system. Logging thereby crosscuts all logged classes and
methods.

Same is true for authorization.

Filters (javax.servlet.filter)

Other classes that preprocess/postprocess request/response

A filter is an object that performs filtering tasks on either the request to a

resource (a servlet or static content), or on the response from a
resource, or both.

Filters perform filtering in the doFilter method. Every Filter has access to a

FilterConfig object from which it can obtain its initialization parameters,
a
reference to the ServletContext which it can use, for example, to
load resources needed for filtering tasks.

Filters are configured in the deployment descriptor of a web

application Examples that have been identified for this design are
1)  Authentication Filters
2)  Logging and Auditing Filters
3)   Image conversion Filters
4)  Data compression Filters
5)  Encryption Filters
6)  Tokenizing Filters
7)  Filters that trigger resource access events
8)  XSL/T filters
9)  Mime-type chain Filter

http://java.sun.com/products/servlet/Filters.html

Filters
Filters are important for a number of reasons. First, they provide the
ability to encapsulate recurring tasks in reusable units.

Second, filters can be used to transform the response from a servlet or
a JSP page. A common task for the web application is to format data
sent back to the client.

Filters
Filters can perform many different types of functions.
*  Authentication-Blocking requests based on user identity.

* Logging and auditing-Tracking users of a web application.
*  Image conversion-Scaling maps, and so on.
* Data compression-Making downloads smaller.

*  Localization-Targeting the request and response to a particular
locale.
*  XSL/T transformations of XML content-Targeting web
application responses to more that one type of client.

These are just a few of the applications of filters. There are many
more, such as encryption, tokenizing, triggering resource access
events, mime-type chaining, and caching.

Filters
The filtering API is defined by the Filter, FilterChain, and FilterConfig

interfaces in the javax.servlet package. You define a filter by
implementing the Filter interface.

The most important method in this interface is doFilter, which is
passed request, response, and filter chain objects. This method can
perform the following actions:

1.  Examine the request headers.
2.  Customize the request object and response objects if needed
3.  Invoke the next entity in the filter chain (configured in the WAR).

The filter invokes the next entity by calling the doFilter method
on the chain object (passing in the request and response it was
called with, or the wrapped versions it may have created).

Filter example

import javax.servlet.*; import javax.servlet.http.*; import java.io.*;
public class LoginFilter implements Filter {
protected FilterConfig filterConfig;
public void init(FilterConfig filterConfig) throws ServletException

{this.filterConfig = filterConfig; }
public void destroy() { this.filterConfig = null;}
public void doFilter(ServletRequest req, ServletResponse res,
FilterChain chain) throws java.io.IOException, ServletException {

String username = req.getParameter("j_username");
if (isUserOk(username)) chain.doFilter(request, response);
res.sendError(javax.servlet.http.HttpServletResponse.SC_UNA
UTHORIZED);

}
// implement here isUserOk()…

}

Example
<filter id="Filter_1">
<filter-name>LoginFilter</filter-name>
<filter-class>LoginFilter</filter-class>
<description>Performs pre-login and post-login operation</description>
<</filter-id>

<filter-mapping>
<filter-name>LoginFilter</filter-name>
<url-pattern>/*</url-pattern>
</filter-mapping>

Filters and sessions

public void doFilter(ServletRequest req, ServletResponse res,
FilterChain chain) throws java.io.IOException, ServletException {

HttpSession session = req.getSession(false);
if (null == session || !(Boolean)session.getAttribute("auth"))

{ if (isUserOk(req.getParameter("user")))
session=req(.getSession(true);
session.setAttribute("auth",new Boolean(true));

} else
res.sendError(javax.servlet.http.HttpServletResponse.SC_UNA
UTHORIZED);

} chain.doFilter(request, response);
}

Filters and parameters

<filter id="Filter_1">
<filter-name>LoginFilter</filter-name>
<filter-class>LoginFilter</filter-class>
<description>Performs pre-login and post-login operation</description>
<init-param>
<param-name>Users</param-name>
<param-value>c:\mydir\Users.lst</param-value>
</init-param>
</filter-id>

Filter sequencing
<filter>

<filter-name>Uncompress</filter-name>
<filter-class>compressFilters.createUncompress</filter-class>

</filter>
<filter>

<filter-name>Authenticate</filter-name>
<filter-class>authentication.createAuthenticate</filter-class>

</filter>
<filter-mapping>

<filter-name>Uncompress</filter-name>
<url-pattern>/status/compressed/*</url-pattern>

</filter-mapping>
<filter-mapping>

<filter-name>Authenticate</filter-name>
<url-pattern>/status/compressed/*</url-pattern>

</filter-mapping>

Both Uncompress and Authenticate appear on the filter chain for servlets located at
/status/compressed/*. The Uncompress filter precedes the Authenticate filter in the chain
because the Uncompress filter appears before the Authenticate filter in the web.xml file.

Further examples

http://www.oracle.com/technetwork/java/filters-137243.html

