Some creation patterns

Soliton & SimpleFactory



Singleton

* Ensure a class has only one instance and
provide a global point of access to it.

class Referee{

private Referee() {

Strings = "";
b

public static Referee getReferee()

public void whistle() {

//...
¥
>




Singleton usage

package myPackage;

public class Game{
public static void main(String a[]) {
new Game ();

¥

Game () {
//Referee a=new Referee (); // would give an error!
Referee b=Referee.getReferee();
Referee c=Referee.getReferee();
System.out.printin(b==c);
b
by




SimpleFactory: isolate the code from
the concrete implementating class

Rereree
Referee x=new BastardReferee(); 2

f (hastardnessievel=—0

Referee x=new FairReferee();
else
Referee x=new BastardReferee();

Referee x=RefereeFactory.getReferee(bastardnessLevel);



using a Simple Factory

1) you call a (possibly static) method in the factory. The call parameters tell
the factory which class to create.

2) the factory creates your object. All the objects it can create either have the
same parent class, or implement the same interface.

3) factory returns the object, the client expect is it to match the parent class /

interface.
Parent x=Factory.create(p);

Step 1

class Factory{
static Parent create(Param p) {
if (p...) return new ChildA();
else return new ChildB();

Clent Sirplke
Y
A~ Factory

Step 3



Factory

Factories are used to encapsulate instantiation.

Service
Interface

~~~~~~

-l
-
-
-
-
~- - - -
- .- -




