
Some	creation	patterns	

Soliton	&	SimpleFactory	

Singleton	

•  Ensure	a	class	has	only	one	instance	and	
provide	a	global	point	of	access	to	it.		

	 class Referee{
 static Referee instance= null;
 private Referee() {
 String s = "";
 }
 public static Referee getReferee() {
 if (instance ==null) instance=new Referee();
 return instance;
 }
 public void whistle() {
 //...
 }
}

Singleton	usage	

package myPackage;

public class Game{
 public static void main(String a[]) {
 new Game ();
 }

 Game () {
 //Referee a=new Referee (); // would give an error!
 Referee b=Referee.getReferee();
 Referee c=Referee.getReferee();
 System.out.println(b==c);
 }
}

SimpleFactory:	isolate	the	code	from	
the	concrete	implementating	class	

BastardReferee	 FairReferee	

Referee	

Referee	x=new	BastardReferee();	

Referee	x=RefereeFactory.getReferee(bastardnessLevel);	

If	(bastardnesslevel==0)	
	Referee	x=new	FairReferee();	

else	
	Referee	x=new	BastardReferee();	

	

using	a	Simple	Factory	
1)	you	call	a	(possibly	static)	method	in	the	factory.	The	call	parameters	tell	
the	factory	which	class	to	create.	
	
2)	the	factory	creates	your	object.	All	the	objects	it	can	create	either	have	the	
same	parent	class,	or	implement	the	same	interface.	
	
3)	factory	returns	the	object,	the	client	expect	is	it	to	match	the	parent	class	/
interface.	
	

Parent	x=Factory.create(p);	

class	Factory{	
	static	Parent	create(Param	p)	{	
	 	if	(p…)	return	new	ChildA();	

																		else	return	new	ChildB();	
	}	

}	

Factory	
Factories	are	used	to	encapsulate	instantiation.		
	

				Client								 		Service	
			Interface	

Service	Impl.	

