Prossime lezioni — vedere sito del corso!

A

Organizzazione dei gruppi per le esercitazioni:

GRUPPO A : Matematici (matricola dispari) + Informatici Matricola divisibile per 3 + Informatici Matricola divisibile per 8
GRUPPO B: tutti gli altri informatici

Calendario delle lezioni e materiale didattico
1 - Mer 19 febbraio 8:30 aula A101 - 1 - Prima lezione
Introduzione al corso. Richiami di C. Il modello di memoria, allocazione automatica. Introduzione alla Java Virtual Machine.

* Slides
« Video

2 - Ven 21 febbraio 10:30 aula B107 - Lezione 2
Tutti gli studenti

- Lun 24 febbraio 13:30 aula B106 - Lezione SOLO PER I MATEMATICI

NOTA: ALLE ESERCITAZIONI 3a e 3b DOVETE ARRIVARE CON IL VOSTRO LAPTOP, SUL QUALE DOVETE AVER GIA' SCARICATO
NETBEANS 8.2 (NON ALTRE VERSIONI!) - IL BUNDLE "JAVA SE" E' SUFFICIENTE. - https://netbeans.org/downloads/8.2/
NON SERVE AVERLO GIA ANCHE INSTALLATO.

3a - Mer 26 febbraio 8:30 aula A101 - Prima esercitazione (docente: Andrea Rosani): SOLO GRUPPO B (vedi sopra)

3b - Ven 21 febbraio 10:30 aula B107 - Prima esercitazione (docente: Andrea Rosani): SOLO GRUPPO A (vedi sopra)

€V

Premessa: definizioni

Ne riparliamo in dettaglio (matematici)
Lunedi pomeriggio ore 13:30 aula B106

AN

3

Definizione: indirizzo di memoria

N

%

indirizzo di memoria:

un identificatore univoco della posizione (locazione o cella
di memoria) sulla quale il processore o un'altra periferica
POSSONO accedere per operazioni di lettura o scrittura

Tipo nome valore indirizzo

int |(a 1 0
int |b 2 4
int[] |cll] 7 8

9 12

0 16

float |d 4.0 20

Operatore indirizzo &:
Dato il nome di una variabile ne restituisce l'indirizzo

z=&d; =>z=20

4

Definizione: puntatore

N

%

Puntatore:

tipi di dato che rappresentano un indirizzo di
memoria

Tipo nome valore indirizzo

int |(a 1 0
int |b 2 4
int[] |cll] 7 8

9 12

0 16

float |d 4.0 20

float* z=&d; => z=20

5

Definizione: dereferenziazione

N

%

Dereferenziazione:

Operazione per cui, dato un puntatore, si accede
all’entita puntata

Tipo nome valore indirizzo

int |a 1 0
intf] |1 7 8
9 12
0 16
float |d 40— 20
.

float* z=&d;

cout << *z; Stampa 4.0

6

Definizione: struttura dati

N

Struttura dati (struct):

una struttura dati € un'entita usata per organizzare un
insieme di dati all'interno della memoria del computer

struct DataTemporale {
int giorno;
int mese;
int anno;

};

DataTemporale oggi;
oggi.giorno=21;
oggili.mese=2;
Oggi.anno=2020;

Richiami di C++ di base

®Richiami di C++ di base
®Parte 2

8

N

Funzioni: problema #1

%

void incrementa(int x) {

x=x+1;
} Come faccio a scrivere una funzione
main (void) { che modifichi le variabili del
int 1 chiamante?
int a=1;

incrementa(a) ;
cout << "a=" a << "\n";

}
Quanto vale a quando viene stampata?

I parametri sono passati per valore (copia)!

9

N

Funzioni: problema #2

%

Come faccio a farmi restituire
piu di un valore da una funzione?

10

N

Puntatori

/ = - =
Operatore indirizzo: &

&a fornisce |'indirizzo della variabile a
Operat. di dereferenziazione: *

*p interpreta la variabile p come un puntatore (indirizzo) e
fornisce il valore contenuto nella cella di memoria puntata

main() {
int a,b,c,d; gkt s 0
int * pa, * pb; : 3 g’
pi=&a ;_pb=&b ; stack < 12
a=1l; b=2; d ? 16
c=a+b; pa 0 20
d=*pa + *pb; pb 4
cout << a<k<" "Kb<" "X ¢ <<endl;\‘
cout << a <" "< *pb <<" '"<K< d <<endl;

}

11

Funzioni e puntatori

N

%

TRUCCO: per passare un parametro per indirizzo,
passiamo per valore un puntatore ad esso!

void incrementa (int *px) {

*px=*px+1;

: : . stack {
main (void) {

int a=1;
incrementa (&a) ;
cout<<a<<endl;

PX

lv lv lv lqu

OUTPUT: 2

12

Il modello di memoria

P
UV
stack memoria allocata dalle funzioni
(Variabili automatiche)
memoria allocata dinamicamente
heap dal programmatore
uninitialized |
data o o . . o
itialized Variabili globali e statiche
read/write data
initialized) _
read lonly data <- questo é supportato solo da alcuni hardware
text Codice eseguibile

13

Operatori new e delete

N

new type alloca sizeof (type) bytes in

memoria (heap) e restituisce un puntatore alla

base della memoria allocata. (esiste una funzione
simile usata in C e chiamata malloc)

delete (* p) dealloca la memoria puntata dal

puntatore p. (Funziona solo con memoria

dinamica allocata tramite new. Esiste un‘analoga
funzione in C chiamata free).

Il mancato uso della delete provoca un insidioso
tipo di errore: il memory leak.

14

N

Allocazione della memoria

%

i . main () {
Allocazione statica int a;
d. memoria co§t<<a<<end1 ; //NO!
] a=3;
.] cout<<a<<endl; OUTPUT - 1
(at compile time)) ;
Allocazione
- - main() { OUTPUT: 4322472
dinamica N .
di memoria pa=new int; 8126664

(at run time)

cout<<*pa<<endl; //NO!

*pa=3;
cout<<*pa<<endl;
delete (pa) ;

cout<<*pa<<endl; //NO!

15

Vettori rivistati

N

%

Dichiarare un vettore e in un certo senso come
dichiarare un puntatore.

v[0] € equivalente a *v7

Attenzione pero alla differenza!

int v[100]; e "equivalente" a:
int *v; v=new int[100];

ATTENZIONE!

la prima versione alloca spazio STATICAMENTE (Stack)
la seconda versione alloca spazio DINAMICAMENTE (Heap)

16

N

L/

Dal C alla OOP (con C++ e Java)
attraverso un esempio

AN

17

Costruiamo uno stack (pila)

N

%

aggiungi

Bl [
]

stackapplet.html

http://../../Docs/_Docs/_Didattica/OOP%25202003/01/stackapplet.html

18

Definizione del tipo Pila

N

%

#$#include <iostream.h>
#include <cassert>

const int growthSize=5; slze
struct Pila {
int size; marker —
int marker; 16
int* contenuto; B}
} s 12
2

contenuto

19 m m = m m
Creare (e inizializzare!) una nuova pila

%
Pila* crea(int initialSize) {
//crea una Pila
cout << "entro in crea” << endl;
Pila *s = new Pila ;
s->size = 1nitialSize;
s->marker = 0O;
s->contenuto = new int[initialSize];
return s;

}

Ricorda: s->size significa (*s).size

. Distruggere una pila esistente

A
N

%

void distruggi (Pila *s) {

cout << "entro in distruggi” << endl;
delete[] (s->contenuto) ;
delete s;

}

21 .
Espandere una pila

A
N

void cresci(Pila *s, int increment) {

cout << "entro in cresci” << endl;

s->size += increment;

int* temp = new int[s->size];

for (int k=0; k < s->marker; k++) {
temp[k] = s->contenutol[k];

}

delete[] (s->contenuto) ;

s->contenuto = temp;

22

N

Inserire un valore in cima alla pila (push)

%

void inserisci(Pila *s, int k) {
cout << "entro in inserisci” << endl;

i1f (s—->size == s->marker)
cresci (s, growthSize);
s->contenuto[s->marker] = k;

s->marker++;

23

Estrarre il valore in cima alla pila (pop)

%

N

int estrai(Pila *s) {
cout << "entro 1in estrai” << endl;
assert (s->marker>0) ;
return s->contenuto[--(s->marker)];

assert: permette di verificare che una proprieta del

programma necessaria a proseguire I'esecuzione
(precondizione o asserzione) sia vera:
se non lo e, I'esecuzione termina.

24

Stampare informazioni sulla pila

%

N

void stampaStato (Pila *s) {

cout <K'"=================="<&<K endl;
cout << "size = " K<L s->size <L endl;
cout << "marker = ” << s->marker << endl;

for (int k=0; k < s->marker; k++)

cout << "[” << (s->contenutol[k]) << "]";
cout << endl;
cout <L "==================" << endl;

25

Creare una copia di una pila esistente

%

N

Pila* copia(Pila *from) ({
cout << "entro in copia” << endl;
Pila *to = crea(from->size);
for (int k=0; k < from->marker; k++)
to->contenuto[k] = from->contenutol[k];
to->marker = from->marker;
return to;

26

Un programma di test

%

N

int main() {
Pila *s = crea(5);
cout << "s"; stampaStato(s) ;
for (int k=1; k<10; k++)
inserisci(s, k) ;
cout << "s"; stampaStato(s) ;
Pila *w = copia(s):;
cout << "w'"; stampaStato (w) ;
for (int k=1; k<8;k++)
cout << estrai(s) << endl;
cout << "s"; stampaStato(s) ;
distruggi (s) ;
cout << "s"; stampaStato(s) ;
for (int k=1; k<15; k++)
cout << estrai(w) << endl;
cout << "w'"; stampaStato (w) ;

27

bash-2.02$ g++ Pila.cpp -o Pila.exe
bash-2.02$ Pila.exe

N

entro 1n crea

S:
s1ze =5
marker =0

entro 1n inserisci
entro 1n inserisci
entro 1n inserisci
entro 1n inserisci
entro 1n inserisci
entro 1n inserisci
entro 1n cresci

entro 1n inserisci
entro 1n inserisci
entro 1n inserisci

S
size = 10
marker =9

LLIL2]I31[41(5 116 L7118][9]

entro in copia
entro in crea

W
size = 10
marker =9

LLIEZJI3 1AL L6718]19]

28

N

entro 1n estrai
0

entro 1n estrai
8

entro 1n estrai
4

entro 1n estrai
3

S
size = 10
marker = 2

L1]12]

entro in distruggi

S
size = 1627775824
marker = 2

[1627775848][1627775848]

entro 1n estrai
0

entro 1n estrai
8

entro 1n estrai
2

entro in estrai

1

entro in estrai

Assertion failed: (s->marker>0),

function estrai, file Pila.cpp, line 56.
bash-2.02$

29

Ma perche abbiamo scritto
il metodo copia?

N

%

#include <Pila.h>
int main() {
Pila * s=crea(b);
cout<<"s'"; stampaStato(s)

for (int k=1; k<10;k++) inserisci(s,k);
cout<<"s"; stampaStato(s)

Pila * w=s; —————mmuy Una copia
cout<<"w"; stampaStato(w); (troppo)
for (int k=1; k<8;k++) sbrigativa ...

cout<< estrai (s)<<endl;
cout<<"s"; stampaStato(s)
cout<<“w'"; stampaStato (w) ;

30

N

S:
size = 10
marker =9

LLI2] [31[4) [S116] [71 18] [9]

W
size = 10
marker = 9

LLI2] [3114] [S116] [71 18] [9]

entro 1n estrai
9
entro 1n estrai
8

entro 1n estrai
4
entro 1n estrai

3

S

size = 10
marker = 2
[1][2]

A%

size = 10
marker = 2

[1][2]

* Interfaccia vs. implementazione:

~Pila.h
1/
struct Pila { Descrive solo
int size; la struttura dati

int marker:; e |le funzioni

int *contenuto;

per manipolarla,
}; ma non la loro
implementazione

Pila* crea(int initialSize);
void distruggi (Pila *s);
Pila* copia(Pila *from);
void cresci(Pila *s, int increment);
void inserisci(Pila *s, int k) ;

int estrai(Pila *s);

void stampaStato(Pila *s);

32

Problemi

%

@ In questo modo pero la struttura dati e slegata
dalle funzioni che la manipolano

@ Per programmi di grandi dimensioni, diventa
difficile capire quali funzioni sono “parte
integrante” di una struttura dati, e quali invece
semplicemente la usano (es., passaggio
parametri)

@ In fondo, una struct non ¢ altro che una

“collezione” di variabili legate fra loro da un
tipo che le contiene. Aggiungiamo ad esse
anche le (sole) funzioni che le manipolano.

N

33

Pila.h — verso una nuova versione

%

N

struct Pila {

int estrai();
};
Pila* crea(int initialSize);
void distruggi (Pila *s);
Pila* copia(Pila *from) ;
void cresci(Pila *s, int increment) ;
void inserisci(Pila *s, int k) ;
// int estrai(Pila *s); vecchia versione
void stampaStato(Pila *s);

Re-implementazione di estrai

A
N

%

int estrai(Pila *s) {
cout << "entro in estrai” << endl;
assert (s->marker>0) ;
return s->contenuto[--(s->marker)];

<<;\v/;77

int estrai () {
cout << "entro i1n estrai” << endl;
assert (this->marker>0) ;
return this->contenuto[--(this->marker)];

Re-implementazione di main

A
N

%

int main() {
Pila *s = crea(5);
cout << "s"; stampaStato(s) ;
for (int k=1; k<10; k++)
inserisci(s,k);
cout << "s"; stampaStato(s) ;
Pila *w = copia(s);
cout << "w"; stampaStato(w) ;
for (int k=1; k<8; k++)
//cout << estrai(s) << endl;
cout << s->estrai() << endl;

Dove scrivere il codice di estrai?

struct Pila { Alternativa #1

int estrai() {
//estrai 1 'ultimo valore
cout << "entro in estrai’” << endl;
assert (this->marker>0) ;
return this->contenuto[--(this->marker)];

%

"Dove scrivere il codice di estrai?

1T struct Pila {)
Alternativa #2

int estrai();

};

int Pila::estrai () {
//estrai 1 'ultimo valore
cout << "entro in estrai’” << endl;
assert (this->marker>0) ;
return this->contenuto[--(this->marker)];

this puo rimanere implicito...

A
N

%

int estrai(Pila *s) {

//estrai 1l’ultimo valore
cout<<"entro in estrai''<<endl;
assert (s->marker>0) ;
return s->contenuto[--(s->marker)];

int estrai() {

//estrai 1l’ultimo valore
cout<<"entro in estrai''<<endl;
assert (marker>0) ;
return contenuto[-- (marker)];

Re-implementazione di crea

A
N

%

Pila* crea(int initialSize) {
Pila *s = new Pila ;
s->size=initialSize;
s->marker=0;
s-> contenuto=new int[initialSize];
return s;

}

Pila::Pila(int initialSize) ({

size = 1nitialSize;
marker=0;

contenuto = new int[initialSize];

40

Re-implementazione di distruggi

void Pila::distruggi () {
//distruggi la Pila
cout << "entro in distruggi” << endl;
delete []contenuto;
delete this;

N

Pila::~Pila() {
//distruggi la Pila
cout << "entro nel distruttore” << endl;

delete []contenuto;

// delete this; -- NO!! distruttore

; |

Re-implementazione di main

A
N

%

int main() {

Pila *s = new Pila(5); // OLD: = crea(5)
cout << "s"; s->stampaStato();

for (int k=1l; k<10; k++) s->inserisci (k) ;
cout << "s"; s->stampaStato();

Pila *w = s->copia();

cout << "w"; w->stampaStato() ;

for (int k=1; k<8; k++)

cout << s->estrai ()<< endl;

cout << "s"; s->stampaStato();

delete s; // OLD: s->distruggi();

cout << "s"; s->stampaStato();

for (int k=1; k<15; k++)

cout << w->estrai() << endl;
cout << "w"; w->stampaStato();

42 :
Pila.h — una nuova versione

A
N

%

struct Pila {

int size;

int marker;

int *contenuto;

Pila(int initialSize);
~Pila() ; .
Pila* copia()

void cresci(int increment)
void inserisci(int k) ;

int estrai();

void stampaStato() ;

,>

variabili di istanza
(0 dati membro)

metodi,
(o funzioni membro)

43

Problemi

%

@ Ora la struttura dati e associata in maniera chiara
alle funzioni che la manipolano

@ Tuttavia, nulla vieta al programmatore di accedere
direttamente alla struttura dati interna di una
variabile di tipo Pila

= Ad esempio, nel main potrei scrivere:
Pila *s = new Pila() ;
s->marker = 15;

= Questo e pericoloso: consente all'utente di Pila
di aggirare le funzioni fornite dal suo autore

Viola i principi di Parnas, lasciando accesso
all'utente di Pila piu di quanto necessario

N

Incapsulamento & /nformation hiding

struct Pila {
Pila(int initialSize) ;
Pila () ;
~Pila () ;
Pila* copia();
void inserisci(int k) ;
int estrai();

void stampaStato () - Quanto_ SpliEE
private: accessibile solo

int size; T ammm = dall'interno

int marker; della variabile di
int *contenuto; tipo P11la, ma
volid cresci(int increment) ; non dall’esterno

45

struct oppure class?

N

%

class Pila { Per default,

int size; dati/funzioni
int defaultGrowthSize; sono

int marker; rivate
int *contenuto; (— ,

void cresci(int increment) ;

public: ... Ma possono
Pila(int initialSize) essere rese
Pila () ; disponibili a
~Pila() ; tutti

Pila* copia();

void inserisci(int k) ;
int estrai() ;

void stampaStato() ;

* struct oppure class?

struct Pila {
private:
int size;
int marker;
int *contenuto;
void cresci(int increment) ;
public:
Pila(int initialSize);
Pila () ;
~Pila () ;
Pila* copia();
void inserisci (int k) ;
int estrai();
void stampaStato() ;

class Pila {
private:
int size;
int marker;
int *contenuto;
void cresci(int increment) ;
public:
Pila(int initialSize);
Pila () ;
~Pila () ;
Pila* copia();
void inserisci (int k) ;
int estrail();
void stampaStato() ;

La differenza principale ¢ la visibilita di defau/t di dati/funzioni membro:
per variabili struct € public, per variabili class € private

