
1

Prossime lezioni – vedere sito del corso!

2

Premessa: definizioni

Ne riparliamo in dettaglio (matematici)
Lunedi pomeriggio ore 13:30 aula B106

3

Definizione: indirizzo di memoria

indirizzo di memoria:
un identificatore univoco della posizione (locazione o cella
di memoria) sulla quale il processore o un'altra periferica
possono accedere per operazioni di lettura o scrittura

9
0

d 4.0

a 1
b 2
c[] 7

0
4
8
12
16
20
...

nome valore indirizzo

Operatore indirizzo &:
Dato il nome di una variabile ne restituisce l’indirizzo

z=&d; => z=20

Tipo
int
int

int[]

float

4

Definizione: puntatore

Puntatore:
tipi di dato che rappresentano un indirizzo di
memoria

9
0

d 4.0

a 1
b 2
c[] 7

0
4
8
12
16
20
...

nome valore indirizzoTipo
int
int

int[]

float

float* z=&d; => z=20

5

Definizione: dereferenziazione

Dereferenziazione:
Operazione per cui, dato un puntatore, si accede
all’entità puntata

9
0

d 4.0

a 1
b 2
c[] 7

0
4
8
12
16
20
...

nome valore indirizzoTipo
int
int

int[]

float

float* z=&d;
cout << *z; Stampa 4.0

6

Definizione: struttura dati

Struttura dati (struct):
una struttura dati è un'entità usata per organizzare un
insieme di dati all'interno della memoria del computer

struct DataTemporale {
int giorno;
int mese;
int anno;

};

DataTemporale oggi;
oggi.giorno=21;
oggi.mese=2;
Oggi.anno=2020;

Richiami di C++ di base

Richiami di C++ di base
Parte 2

8

Funzioni: problema #1

void incrementa(int x) {
x=x+1;

}
main(void) {

int a=1;
incrementa(a);
cout << "a=" a << "\n";

}

Quanto vale a quando viene stampata?
I parametri sono passati per valore (copia)!

Come faccio a scrivere una funzione
che modifichi le variabili del

chiamante?

9

Funzioni: problema #2

Come faccio a farmi restituire
più di un valore da una funzione?

main() {
int a,b,c,d;
int * pa, * pb;
pa=&a; pb=&b;
a=1; b=2;
c=a+b;
d=*pa + *pb;
cout << a<<" "<<b<<" "<< c <<endl;
cout << a <<" "<< *pb <<" "<< d <<endl;

}

10

Puntatori
Operatore indirizzo: &

&a fornisce l’indirizzo della variabile a
Operat. di dereferenziazione: *

*p interpreta la variabile p come un puntatore (indirizzo) e
fornisce il valore contenuto nella cella di memoria puntata

d ?
pa 0
pb 4

a 1
b 2
c ?

stack

0
4
8
12
16
20
...

11

Funzioni e puntatori
TRUCCO: per passare un parametro per indirizzo,

passiamo per valore un puntatore ad esso!

OUTPUT: 2

void incrementa(int *px) {
*px=*px+1;

}
main(void) {

int a=1;
incrementa(&a);
cout<<a<<endl;

}

?
?
?

a 1
px 0

?

stack
0
4
8
12
16
20
...

12

Il modello di memoria

memoria allocata dalle funzioni
(Variabili automatiche)

memoria allocata dinamicamente
dal programmatore

Variabili globali e statiche

Codice eseguibiletext

initialized
read/only data

initialized
read/write data

uninitialized
data

heap

stack

<- questo é supportato solo da alcuni hardware

13

Operatori new e delete

new type alloca sizeof(type) bytes in
memoria (heap) e restituisce un puntatore alla
base della memoria allocata. (esiste una funzione
simile usata in C e chiamata malloc)

delete(* p) dealloca la memoria puntata dal
puntatore p. (Funziona solo con memoria
dinamica allocata tramite new. Esiste un’analoga
funzione in C chiamata free).

Il mancato uso della delete provoca un insidioso
tipo di errore: il memory leak.

14

Allocazione della memoria

Allocazione statica
di memoria
(at compile time)

Allocazione
dinamica
di memoria
(at run time)

main() {
int *pa;
pa=new int;
cout<<*pa<<endl; //NO!
*pa=3;
cout<<*pa<<endl;
delete(pa);
cout<<*pa<<endl; //NO!

}

main() {
int a;
cout<<a<<endl; //NO!
a=3;
cout<<a<<endl;

}
OUTPUT: 1

3

OUTPUT: 4322472
3

8126664

15

Vettori rivistati

Dichiarare un vettore è in un certo senso come
dichiarare un puntatore.

v[0] è equivalente a *v

Attenzione però alla differenza!
int v[100]; è "equivalente" a:

int *v; v=new int[100];

ATTENZIONE!
la prima versione alloca spazio STATICAMENTE (Stack)
la seconda versione alloca spazio DINAMICAMENTE (Heap)

16

Dal C alla OOP (con C++ e Java)
attraverso un esempio

17

Costruiamo uno stack (pila)

stackapplet.html

http://../../Docs/_Docs/_Didattica/OOP%25202003/01/stackapplet.html

18

#include <iostream.h>
#include <cassert>

const int growthSize=5;

struct Pila {
int size;
int marker;
int* contenuto;

};

marker

size

contenuto
2

12
5

16

Definizione del tipo Pila

19

Pila* crea(int initialSize) {
//crea una Pila

cout << "entro in crea” << endl;
Pila *s = new Pila ;
s->size = initialSize;
s->marker = 0;
s->contenuto = new int[initialSize];

return s;
}

Creare (e inizializzare!) una nuova pila

Ricorda: s->size significa (*s).size

20

void distruggi(Pila *s) {
cout << "entro in distruggi” << endl;

delete[](s->contenuto);
delete s;

}

Distruggere una pila esistente

21

void cresci(Pila *s, int increment){
cout << "entro in cresci” << endl;
s->size += increment;
int* temp = new int[s->size];
for(int k=0; k < s->marker; k++) {

temp[k] = s->contenuto[k];
}
delete[](s->contenuto);
s->contenuto = temp;

}

Espandere una pila

22

void inserisci(Pila *s, int k) {
cout << "entro in inserisci” << endl;
if(s->size == s->marker)

cresci(s, growthSize);
s->contenuto[s->marker] = k;
s->marker++;

}

Inserire un valore in cima alla pila (push)

23

int estrai(Pila *s) {
cout << "entro in estrai” << endl;
assert(s->marker>0);
return s->contenuto[--(s->marker)];

}

Estrarre il valore in cima alla pila (pop)

assert: permette di verificare che una proprietà del
programma necessaria a proseguire l’esecuzione

(precondizione o asserzione) sia vera:
se non lo è, l’esecuzione termina.

24

void stampaStato(Pila *s) {
cout <<"=================="<< endl;
cout << "size = ” << s->size << endl;
cout << "marker = ” << s->marker << endl;
for(int k=0; k < s->marker; k++)

cout << "[” << (s->contenuto[k]) << "]";
cout << endl;
cout << "==================” << endl;

}

Stampare informazioni sulla pila

25

Pila* copia(Pila *from) {
cout << "entro in copia” << endl;
Pila *to = crea(from->size);
for(int k=0; k < from->marker; k++)

to->contenuto[k] = from->contenuto[k];
to->marker = from->marker;
return to;

}

Creare una copia di una pila esistente

26

int main() {
Pila *s = crea(5);
cout << "s"; stampaStato(s);
for(int k=1; k<10; k++)

inserisci(s, k);
cout << "s"; stampaStato(s);
Pila *w = copia(s);
cout << "w"; stampaStato(w);
for (int k=1; k<8;k++)

cout << estrai(s) << endl;
cout << "s"; stampaStato(s);
distruggi(s);
cout << "s"; stampaStato(s);
for(int k=1; k<15; k++)

cout << estrai(w) << endl;
cout << "w"; stampaStato(w);

}

Un programma di test

27

bash-2.02$ g++ Pila.cpp -o Pila.exe
bash-2.02$ Pila.exe
entro in crea
s==================
size = 5
marker = 0

==================
entro in inserisci
entro in inserisci
entro in inserisci
entro in inserisci
entro in inserisci
entro in inserisci
entro in cresci
entro in inserisci
entro in inserisci
entro in inserisci

s==================
size = 10
marker = 9
[1][2][3][4][5][6][7][8][9]
==================
entro in copia
entro in crea
w==================
size = 10
marker = 9
[1][2][3][4][5][6][7][8][9]
==================

28

entro in estrai
9
entro in estrai
8
…
entro in estrai
4
entro in estrai
3
s==================
size = 10
marker = 2
[1][2]
==================

entro in distruggi
s==================
size = 1627775824
marker = 2
[1627775848][1627775848]
==================
entro in estrai
9
entro in estrai
8
…
entro in estrai
2
entro in estrai
1
entro in estrai
Assertion failed: (s->marker>0),
function estrai, file Pila.cpp, line 56.
bash-2.02$

29

#include <Pila.h>
int main() {

Pila * s=crea(5);
cout<<"s"; stampaStato(s);

for (int k=1; k<10;k++) inserisci(s,k);
cout<<"s"; stampaStato(s);
Pila * w=s;
cout<<"w"; stampaStato(w);
for (int k=1; k<8;k++)

cout<< estrai(s)<<endl;
cout<<"s"; stampaStato(s);
cout<<“w"; stampaStato(w);

}

Ma perchè abbiamo scritto
il metodo copia?

Una copia
(troppo)

sbrigativa …

30

s==================
size = 10
marker = 9
[1][2] [3][4] [5] [6] [7] [8] [9]
==================
w==================
size = 10
marker = 9
[1][2] [3][4] [5] [6] [7] [8] [9]
==================
entro in estrai
9
entro in estrai
8
…

…
entro in estrai
4
entro in estrai
3
s==================
size = 10
marker = 2
[1][2]
==================
w==================
size = 10
marker = 2
[1][2]
==================

31

struct Pila {
int size;
int marker;
int *contenuto;

};

Pila* crea(int initialSize);
void distruggi(Pila *s);
Pila* copia(Pila *from);
void cresci(Pila *s, int increment);
void inserisci(Pila *s, int k);
int estrai(Pila *s);
void stampaStato(Pila *s);

Interfaccia vs. implementazione:
Pila.h

Descrive solo
la struttura dati

e le funzioni
per manipolarla,
ma non la loro

implementazione

Problemi

In questo modo però la struttura dati è slegata
dalle funzioni che la manipolano
Per programmi di grandi dimensioni, diventa
difficile capire quali funzioni sono “parte
integrante” di una struttura dati, e quali invece
semplicemente la usano (es., passaggio
parametri)
In fondo, una struct non è altro che una
“collezione” di variabili legate fra loro da un
tipo che le contiene. Aggiungiamo ad esse
anche le (sole) funzioni che le manipolano.

32

33

struct Pila {
int size;
int marker;
int *contenuto;
int estrai();

};
Pila* crea(int initialSize);
void distruggi(Pila *s);
Pila* copia(Pila *from);
void cresci(Pila *s, int increment);
void inserisci(Pila *s, int k);
// int estrai(Pila *s); vecchia versione
void stampaStato(Pila *s);

Pila.h – verso una nuova versione

34

int estrai(Pila *s) {
cout << "entro in estrai” << endl;
assert(s->marker>0);
return s->contenuto[--(s->marker)];

}

int estrai() {
cout << "entro in estrai” << endl;
assert(this->marker>0);
return this->contenuto[--(this->marker)];

}

Re-implementazione di estrai

35

int main() {
Pila *s = crea(5);
cout << "s"; stampaStato(s);
for (int k=1; k<10; k++)

inserisci(s,k);
cout << "s"; stampaStato(s);
Pila *w = copia(s);
cout << "w"; stampaStato(w);
for(int k=1; k<8; k++)

//cout << estrai(s) << endl;
cout << s->estrai() << endl;

…
}

Re-implementazione di main

36

struct Pila {
int size;
int marker;
int *contenuto;
int estrai() {

//estrai l’ultimo valore
cout << "entro in estrai” << endl;
assert(this->marker>0);
return this->contenuto[--(this->marker)];

}
};

Dove scrivere il codice di estrai?

Alternativa #1

37

struct Pila {
int size;
int defaultGrowthSize;
int marker;
int *contenuto;
int estrai();

};

int Pila::estrai() {
//estrai l’ultimo valore
cout << "entro in estrai” << endl;
assert(this->marker>0);
return this->contenuto[--(this->marker)];

}

Dove scrivere il codice di estrai?

Alternativa #2

38

int estrai(Pila *s) {
//estrai l’ultimo valore

cout<<"entro in estrai"<<endl;
assert(s->marker>0);
return s->contenuto[--(s->marker)];

}

int estrai() {
//estrai l’ultimo valore

cout<<"entro in estrai"<<endl;
assert(marker>0);
return contenuto[--(marker)];

}

this può rimanere implicito…

39

Pila* crea(int initialSize) {
Pila *s = new Pila ;
s->size=initialSize;
s->marker=0;
s-> contenuto=new int[initialSize];

return s;
}

Pila::Pila(int initialSize) {
size = initialSize;
marker=0;
contenuto = new int[initialSize];

}

Re-implementazione di crea

costruttore

40

void Pila::distruggi() {
//distruggi la Pila
cout << "entro in distruggi” << endl;
delete []contenuto;
delete this;

}

Pila::~Pila() {
//distruggi la Pila
cout << "entro nel distruttore” << endl;
delete []contenuto;
// delete this; -- NO!!

}
distruttore

Re-implementazione di distruggi

41

int main() {
Pila *s = new Pila(5); // OLD: = crea(5)
cout << "s"; s->stampaStato();
for (int k=1; k<10; k++) s->inserisci(k);
cout << "s"; s->stampaStato();
Pila *w = s->copia();
cout << "w"; w->stampaStato();
for (int k=1; k<8; k++)

cout << s->estrai()<< endl;
cout << "s"; s->stampaStato();
delete s; // OLD: s->distruggi();
cout << "s"; s->stampaStato();
for (int k=1; k<15; k++)

cout << w->estrai() << endl;
cout << "w"; w->stampaStato();

}

Re-implementazione di main

42

struct Pila {
int size;
int marker;
int *contenuto;
Pila(int initialSize);
~Pila();
Pila* copia();
void cresci(int increment);
void inserisci(int k);
int estrai();
void stampaStato();

};

variabili di istanza
(o dati membro)

metodi,
(o funzioni membro)

Pila.h – una nuova versione

Problemi

Ora la struttura dati è associata in maniera chiara
alle funzioni che la manipolano
Tuttavia, nulla vieta al programmatore di accedere
direttamente alla struttura dati interna di una
variabile di tipo Pila
n Ad esempio, nel main potrei scrivere:
Pila *s = new Pila();
s->marker = 15;

n Questo è pericoloso: consente all’utente di Pila
di aggirare le funzioni fornite dal suo autore

Viola i principi di Parnas, lasciando accesso
all’utente di Pila più di quanto necessario

43

44

struct Pila {
Pila(int initialSize);
Pila();
~Pila();
Pila* copia();
void inserisci(int k);
int estrai();
void stampaStato();

private:
int size;
int marker;
int *contenuto;
void cresci(int increment);

};

Incapsulamento & information hiding

Quanto segue è
accessibile solo

dall’interno
della variabile di
tipo Pila, ma
non dall’esterno

45

class Pila {
int size;
int defaultGrowthSize;
int marker;
int *contenuto;
void cresci(int increment);

public:
Pila(int initialSize) ;
Pila();
~Pila();
Pila* copia();
void inserisci(int k);
int estrai();
void stampaStato();

};

struct oppure class?
Per default,
dati/funzioni

sono
private

… ma possono
essere rese
disponibili a

tutti

46

struct Pila {
private:
int size;
int marker;
int *contenuto;
void cresci(int increment);
public:
Pila(int initialSize);
Pila();
~Pila();
Pila* copia();
void inserisci(int k);
int estrai();
void stampaStato();

};

class Pila {
private:
int size;
int marker;
int *contenuto;
void cresci(int increment);
public:
Pila(int initialSize);
Pila();
~Pila();
Pila* copia();
void inserisci(int k);
int estrai();
void stampaStato();

};

struct oppure class?

La differenza principale è la visibilità di default di dati/funzioni membro:
per variabili struct è public, per variabili class è private

