Compito di Programmazione 2/Linguaggi di Programmazione (Proff. Picco e Ronchetti)
Prova al calcolatore — gennaio 2020

Il Sudoku di ordine N & un gioco nel quale al giocatore viene proposta una griglia di N2x N?
celle, ciascuna delle quali pud contenere un simbolo scelto da una lista di N2 elementi
differenti, oppure essere vuota. Per i Sudoku di ordine 2 e 3 in genere i simboli sono numeri
compresi tra 1 ed N2,

La griglia & suddivisa in N? righe orizzontali, N colonne verticali e in N? “sottogriglie”
guadrate non sovrapposte di NxN celle contigue. Queste sottogriglie (evidenziate
graficamente, di solito delimitandole con bordi in neretto) sono dette “regioni”.

La REGOLA e che in ogni riga, in ogni colonna e in ogni regione non vi siano simboli ripetuti.

Lo scopo del gioco e quello di riempire tutte le caselle rispettando la regola.
In tal modo in ogni riga, ogni colonna e ogni regione saranno presenti tutti i simboli, senza
ripetizioni.

ece

valore 3 v Cellelibere 69

Si scriva un programma che gestisce un Sudoku di ordine N=2 o 3. In particolare:

1) Il programma deve riprodurre il pit fedelmente possibile la figura sopra, con una
scena di dimensione 500x525. Nel titolo devono figurare il vostro nome e
cognome. La finestra comprende una griglia (GridPane) composta di N* celle, una
ChoiceBox e un contatore. La ChoiceBox permette di scegliere un numero intero
compreso tra 1 e N2,

2) Le celle sono di tre tipi:

e NON INIZIALIZZATE (sfondo bianco);

e FISSE (sfondo grigio), con valori assegnabili una sola volta dall’'utente;

e LIBERE (sfondo colorato), inizialmente vuote e modificabili dall’utente.

3) Le celle libere assumono un colore di sfondo che dipende dalla regione in cui si
trovano. Si usino colori scelti tra i seguenti: LIGHTYELLOW, LIGHTPINK



LIGHTSTEELBLUE, LIGHTGREEN, LIGHTBLUE, LIGHTSALMON, LAVENDER, BISQUE,
HONEYDEW.

4) Inizialmente all’'utente viene chiesto I'ordine (N). | valori ammessi saranno N=2
ed N=3. (Si puo eventualmente, con una piccola penalita, ammettere il solo
valore 3 cosi da sviluppare il codice solo per un ordine fisso).

5) Ottenuto N, il sistema genera la griglia corrispondente, composta di celle non
inizializzate.

6) Cliccando su una cella non inizializzata, questa viene sostituita da una cella fissa,
il cui valore & quello mostrato al momento dalla ChoiceBox. L'operazione viene
effettuata solo se la REGOLA non viene violata, altrimenti non accade nulla.

7) Altermine della generazione di N? celle fisse, tutte le rimanenti celle non
inizializzate vengono sostituite da celle libere vuote e il gioco ha inizio.

8) Un click sulle celle fisse non avra alcun effetto.

9) Un click sulle celle libere vuote provera ad inserire il valore numerico mostrato al
momento dalla ChoiceBox. L'inserimento avviene se la REGOLA non viene violata,
altrimenti non accade nulla.

10) Un click sulle celle libere che abbiano gia un valore assegnato rimuove tale
valore.

11) Un contatore mostra in un campo di testo (non editabile manualmente) posto
sotto la griglia il numero di celle libere attualmente vuote.

12) Quando il numero di celle libere vuote scende a zero, viene mostrata una finestra
che dichiara la vittoria. (Nota: il test di questo caso é fattibile in tempi ragionevoli
solo se I'ordine & 2).

13) Il programma termina (in ogni caso) quando 'utente chiude la finestra
contenente la griglia.

Si richiede di usare ereditarieta ove possibile e di attenersi alle “buone pratiche” di
programmazione.

Il compito e lungo: per ottenere la sufficienza non & indispensabile completare tutti i punti.
In ogni caso la consegna deve compilare senza errori, ed i punti implementati devono essere
funzionanti correttamente.

Si vedano i suggerimenti alla pagina seguente.



1) Una ChoiceBox cb si popola inizialmente con

cb.getItems () .addAll ("A", "B", "C”); // lista ordinata dei valori possibili
cb.setValue("A"); // valore mostrato

Il valore corrente della ChoiceBox cb si ottiene con

String s=(String)cb.getValue() ;

2) Puo risultare utile la seguente funzione per trovare un elemento in un GridPane a
partire dalle sue coordinate i (indice di colonna) e j (indice di riga)

Node getElementAt (GridPane p, int i, int j) {
for (Node x : p.getChildren()) {

if ((GridPane.getColumnIndex(x) !'= null && GridPane.getColumnIndex(x) == i)
&& (GridPane.getRowIndex(x) !'= null && GridPane.getRowIndex(x) == j)) {
return x;

}
}

return null;

3) Per sostituire in un GridPane un oggetto A con un’oggetto B occorre rimuovere
I'oggetto A (metodo remove applicato ai children della griglia) e aggiungere
I'oggetto B (metodo add applicato alla griglia).

4) Potrebbe essere conveniente posticipare la colorazione delle regioni (punto 3).

5) La parte pil complessa del compito & 'implementazione della REGOLA. Se
progettata bene puo semplificarsi parecchio.



