Esempi notevoli di problemi ed errori

Forse si impara di piu a vedere gli errori che le cose giuste...

Quindi ho scelto sette progetti che presentano problemi notevoli, e li ho anonimizzati (gli
autori li riconosceranno: ma non si deprimano per questo, cerchino piuttosto di cogliere in
positivo I'indicazione di cosa devono sistemare).

Credo che guardarli, dopo aver letto i commenti che trovate nel seguito, possa essere di
aiuto a chi deve ancora fare I'esame.

Progetto BADO1:
Il progetto non gira perché ha un problema con gli array.

1) Usare array quando non € necessario € un errore. Imparate a usare le collections
invece! Ad esempio, per restituire i primi cinque elementi dopo il sort viene fatta una
conversione di una lista in Array:

stampa((Alloggio[])alloggi.subList(0, 5).toArray());
Ma la toArray restituisce un Object[], e non si puo fare un cast di un array su un
altro! Quindi questa riga da errore, e non se ne esce.
Tutto questo usando le Collections sarebbe facile e immediato: sarebbe stato
sufficiente scrivere il metodo stampa in modo che lavorasse su una lista invece che
su un array...

2) Reimplementa il sort. Perché mai? Le API di collection lo fanno probabilmente
meglio di quanto lo scrivereste voi. Dovete imparare a riusare il codice esistente, &
uno dei vantaggi di OOP. Solo quando ci sono esigenze particolari si riscrive,
altrimenti si riusa!

Progetto BADO2:

Il progetto gira, e sembra funzionare. Ma davvero fa quel che deve nel modo giusto?

No, siamo davvero molto lontani da una soluzione accettabile...

1)

2)

3)

4)

Nella classe di avvio, le viste ordinate sono preparate a mano (!) invece che
calcolate!
Per gestire i click che mostrano le immagini si mettono dei bottoni. Ma chi ha mai
detto che gli unici gestori di eventi sono i bottoni? Basta far ascoltare i click del
mouse (con tipo di evento giusto e listener giusto) alla componente che mostra il
nome dell’alloggio: non serve che sia un bottone!
Invece che usare ereditarieta viene creata una variabile che mantiene il tipo di
alloggio: sbagliatissimo!
public class Alloggio {
Alloggio(String t, String n, int p, float v, String d) {
t = tipoalloggio;
n = nome;
p = prezzo;
v = valutazione;
d = descrizione;
}
String tipoalloggio;
String nome;
int prezzo;
float valutazione;
String descrizione;
}
A parte poi che nel costruttore I'ordine delle variabili € invertito: n = nome; invece di
nome = n;
Sostanzialmente e senza struttura: ci sono 4 classi, ma ListaAlloggi e Textfield non
sono usate (la seconda poi € vuota...), di Alloggio abbiamo gia detto, il resto e tutto
in una sola classe!

Progetto BADO3:
Il progetto non € completo. La ragione per cui lo includiamo in questa “rassegna” e per la
una curiosa creazione di classi: definisce la classe Stella, che in realta non crea una Stella, ma
solo un contenitore, e poi le classi da Stellal a Stella5, ciascuna delle quali aggiunge delle
stelle al contenitore.
public class Stella extends HBox{

Rectangle sfondo = new Rectangle(60, 30);

Stella() {

this.getChildren().add(sfondo);

}

}

public class Stella3 extends Stella {
Stella3() {
Circle c1 = new Circle(10);
Circle c2 = new Circle(10);
Circle c3 = new Circle(10);
this.getChildren().add(c1);
this.getChildren().add(c2);
this.getChildren().add(c3);
}
}

Non e un buon uso del concetto di classe... Sarebbe stato assai meglio, e molto piu semplice,
scrivere ad esempio un’unica classe di questo tipo:
public class Stelle {
Rectangle sfondo = new Rectangle(60, 30);
Stelle(int n) {
this.getChildren().add(sfondo);
for (int k=0; k<n; k++) {
Circle c = new Circle(10);
this.getChildren().add(c);

Progetto BADO4:

Un altro esempio di progetto assolutamente insufficiente anche se “gira”, pur non essendo
completo.

Non c’e, nel progetto, alcun oggetto di business! Quando leggiamo un testo, dobbiamo
vedere quali entita si prestano a diventare classi, quali sono le relazioni tra di esse, se
sussiste dell’ereditarieta... Niente di tutto cio e stato fatto in questo caso.

Abbiamo una classe “Campo” che viene istanziata con sei valori a seconda di uno switch su
un indice.

public class Campo {

int p;

double v;

Text nomeCampo, prezzoCampo, valutazioneCampo;
HBox extraCampo;

public Campo(int index) {
switch (index) {
case 1:
nomeCampo.setText("Alpenhof");
p =60;
v =28.5;
prezzoCampo.setText("" + p);
valutazioneCampo.setText("" + v);
extraCampo.getChildren().add(new Text("Mezza pensione"));
break;

Ma se la nostra applicazione dovesse diventare Booking.com, dovremmo prendere questa
classe e mettere nella sua pancia milioni di alloggi, invece di istanziarli! Non ha proprio
senso.

A leggere il codice, di cosa si occupa la classe Campo? Non lo sappiamo finché non ne
esaminiamo il contenuto. In un progetto ben fatto, avremmo le classi Alloggio, Albergo,
Appartamento, Pensione, che servono a istanziare business objects, ovvero le cose di cui
parliamo e che avrebbero relazioni di ereditarita. Per inciso, I'uso di ereditarieta ove
possibili era anche esplicitato come requisito progettuale.

Progetto BADO5:

Questo progetto fa tutto quel che e stato richiesto, ma mostra una grave confusione tra il
concetto di classe e quello di oggetto.

Viene definita una classe astratat Alloggio, ma poi questa, invece che essere sottoclassata
per tipologia, viene sottoclassata per ciascuna istanza.

Quindi ad esempio troviamo la seguente classe:

public class Alpenhof extends Alloggio{
Alpenhof(){
nome="Alpenhof";
prezzo=60;
valutazione=8.5;
extra="MEZZA_PENSIONE";
location="img/"+nome+".jpg";

Ma una classe € uno stampino per produrre oggetti dello stesso tipo! Quanti Hotel
Alpenhof vorremo creare? Avremmo dovuto fare una classe “Hotel”, e poi istanziarla
nei vari casi (uno per Alpenhof, uno per Majestic ecc, e poi analogamente una classe
per “Pensione” con le sue istanze ecc.

Questa confusione tra classe e istanza e stata considerata gravissima.

1)

Altri suggerimenti

L’ereditarieta dovrebbe in genere accompagnarsi con il polimorfismo.

Ad esempio, nella classe Alloggio prevediamo un comportamento definito come
addExtra che agisce su un parametro che, in modo assai generale, prevediamo
essere un Parent.

public abstract class Alloggio {
String nomeAlloggio;
int prezzoAlloggio;
double valutazioneAlloggio;

abstract void addExtra(Parent p)
}

Le sottoclassi implementeranno il comportamento, ciascuna a modo suo. Ad
esempio:

public class Albergo extends Alloggio {
Stelle stelle;

void addExtra(Parent p) {
p.getChildren().add(stelle);
}
}

public class Appartament extends Alloggio {
int maxPersone;

void addExtra(Parent p) {
TextField tf=new TextField(“Max persone: “+maxPersone);
p.getChildren().add(tf);
}

In questo modo, non servira nel main preoccuparsi di quale particolare sottoclasse di
alloggio abbiamo:

Alloggio al=new Albergo(“nomeAlb”,100,8.5,3)
Alloggio a2=new Appartamento((“nomeApp”,50,8.2,3)
HBox hl=new HBox();

HBox h2=new HBox();

al.addExtra(hl);

a2.addExtra(h2);

Non servono if, switch, instanceof, tipo o altro!

2)
3)
4)
5)

6)

E’ sbagliato usare variabili statiche come canale di comunicazione tra classi. Static
sono SOLO le costanti, e le variabili e i metodi DI CLASSE.

I nome del package deve essere tale da non creare potenziali conflitti nemmeno in
futuro, quindi dovrebbe essere univoco al mondo!

Le consegna vanno rispettate: se ad esempio si dice che una finestra deve avere una
dimensione data, cosi deve essere.

A far bene, le classi dovrebbero sempre avere la equals e la hashcode (ve le genera
gratis Netbeans...)

Anche la documentazione (javadoc) puo essere generata automaticamente da
Netbeans (almeno come scheletro). @param e @ return, generati automaticamente,
vanno pero completati con la semantica — ovvero va aggiunta qualche parola che
spieghi il ruolo della variabile o del valore di ritorno.

Es.: il commento

@param width

generato automaticamente va completato in

@param width Larghezza della finestra

