jar & jar files



jar command

Java Archive
* inherits from tar : Tape Archive

commands:
jar cvf filename | jar tvf filename | jar xvf filename

java —jar filename.jar



jar file

A JAR file can contain Java class files, XML descriptor files,
auxiliary resources, static HTML files, and other files

META-INF - Manifest

See http://docs.oracle.com/javase/tutorial/deployment/jar/

specialized jars:
- Wwar
- ear



Quick introduction to Java beans



Java Bean

JavaBeans are reusable software components
for Java.

They are classes that encapsulate information
and behavior into a single object (the bean).

They are serializable, have a 0-argument
constructor, and allow access to properties
using getter and setter methods.



Introduction to Session beans

Enterprise Java Beans
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Stateless session Beans

A stateless session bean does not maintain a
conversational state for a particular client.

When a client invokes the method of a
stateless bean, the bean's instance variables
may contain a state, but only for the
duration of the invocation. When the method
is finished, the state is no longer retained.



Stateless vs. stateful session Beans

All instances of a stateless bean are
equivalent, allowing the EJB container to
assign an instance to any client.

=> Stateless session beans
, and offer
for applications that require

large numbers of clients.

Typically, an application requires fewer stateless session
beans than stateful session beans to support the same number
of clients.
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EJB ingredients

Interfaces: The remote and home interfaces are
required for remote access. For local access,
the local and local home interfaces are
required.

Enterprise bean class: the methods
defined in the interfaces.

Helper classes: Other classes needed by the
enterprise bean class, such as exception and

utility classes.

Deployment descriptor: see later



Remote Interface

*
*

This is the HelloBean remote interface.

This interface is what clients operate on when
they interact with EJB objects. The container
vendor will implement this interface; the
implemented object is the EJB object, which
delegates invocations to the actual bean.

* % Ok Ok F F F N

*/
public interface Hello extends javax.ejb.EJBObject

{

/**

* The one method - hello - returns a greeting to the client.
*/

public String hello() throws java.rmi.RemoteException;

Must throw
RemoteException




Home Interface

/**

* This is the home interface for HelloBean. This interface
* is implemented by the EJB Server’s tools - the

* implemented object is called the Home Object, and serves
* as a factory for EJB Objects.

*

* One create() method is in this Home Interface, which

*

corresponds to the ejbCreate() method in HelloBean.

*/

public interface HelloHome extends javax.ejb.EJBHome

{

/*

* This method creates the EJB Object.

*

* @return The newly created EJB Object.

*/

Hello create() throws java.rmi.RemoteException,
javax.e]jb.CreateException;



Bean Implementation

/**
* Demonstration stateless session bean.
*/
public class HelloBean implements javax.ejb.SessionBean {
private javax.ejb.SessionContext ctx;
//
// EJB-required methods
//
public void ejbCreate() { System.out.println(“ejbCreate()”); }
public void ejbRemove () { System.out.println(“ejbRemove()”); }
public void ejbActivate() { System.out.println(“ejbActivate()”);}
public void ejbPassivate() {System.out.println(“ejbPassivate()”);}
public void setSessionContext(javax.ejb.SessionContext ctx) {
this.ctx = ctx; }
//
// Business methods
//
public String hello() {
System.out.println(“hello()”);
return “Hello, World!'!'”;



Client Implementation

import javax.naming.Context;
import javax.naming.InitialContext;
import java.util.Properties;
/**
* This class is an example of client code that invokes
* methods on a simple stateless session bean.
*/
public class HelloClient ({
public static void main(String[] args) throws Exception ({
/*
* Setup properties for JINDI initialization.
* These properties will be read in from the command line.
*/
Properties props = System.getProperties() ;
/*
* Obtain the JNDI initial context.
The initial context is a starting point for
connecting to a JNDI tree. We choose our JNDI
driver, the network location of the server, etc.
by passing in the environment properties.

* F * *

*/

Context ctx = new InitialContext (props)



Client Implementation

/* Get a reference to the home object - the

* factory for Hello EJB Objects

*/

Object obj = ctx.lookup(“HelloHome”) ;

/* Home objects are RMI-IIOP objects, and so they must be cast
* into RMI-IIOP objects using a special RMI-IIOP cast.
*/

HelloHome home = (HelloHome)
javax.rmi.PortableRemoteObject.narrow(obj, HelloHome.class) ;
/* Use the factory to create the Hello EJB Object

*/

Hello hello = home.create() ;

/*Call the hello() method on the EJB object. The

* EJB object will delegate the call to the bean,

* receive the result, and return it to us.

* We then print the result to the screen.

*/

System.out.println(hello.hello());

/*

* Done with EJB Object, so remove it.

* The container will destroy the EJB object.

*/

hello.remove () ;
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