Java XML parsing

Tree-based vs Event-based API mﬂai

Tree-based API
A tree-based API compiles an XML document into an internal
tree structure. This makes it possible for an application
program to navigate the tree to achieve its objective. The
Document Object Model (DOM) working group at the W3C is
developing a standard tree-based API for XML.

Event-based API
An event-based API reports parsing events (such as the start
and end of elements) to the application using callbacks. The
application implements and registers event handlers for the
different events. Code in the event handlers is designed to
achieve the objective of the application. The process is similar
(but not identical) to creating and registering event listeners in

the Java Delegation Event Model.

Marco Ronchetti -

what is SAX? ponf-‘x

SAX is a set of interface definitions
For the most part, SAX is a set of interface definitions. They
specify one of the ways that application programs can interact
with XML documents.

(There are other ways for programs to interact with XML documents
as well. Prominent among them is the Document Object Model,
or DOM)

Marco Ronchetti -

SAX is a standard interface for event-based XML parsing, developed
collaboratively by the members of the XML-DEV mailing list. SAX
1.0 was released on Monday 11 May 1998, and is free for both
commercial and noncommercial use.

The current version is SAX 2.0.1 (released on 29-January 2002)
JO See

JAXP "

JAXP:
This API provides a common interface for creating and using the
standard SAX, DOM, and XSLT APIs in Java, regardless of which
vendor's implementation is actually being used.

The main JAXP APIs are defined in the package.
That package contains two vendor-neutral factory classes:
SAXParserFactory and DocumentBuilderFactory that give you a
SAXParser and a DocumentBuilder, respectively. The
DocumentBuilder, in turn, creates DOM-compliant Document
object.

Marco Ronchetti -

The actual binding to a DOM or SAX engine can be specified using
the System properties (but a default is provided).

JAXP — other packages poﬂm

org.xml.sax
The "Simple API" for XML (SAX) is the event-driven, serial-access
mechanism that does element-by-element processing. The API for this
level reads and writes XML to a data repository or the Web.

org.w3c.dom

The DOM API is generally an easier API to use. It provides a familiar tree
structure of objects. You can use the DOM API to manipulate the hierarchy
of application objects it encapsulates. The DOM API is ideal for interactive
applications because the entire object model is present in memory, where it
can be accessed and manipulated by the user.

On the other hand, constructing the DOM requires reading the entire XML
structure and holding the object tree in memory, so it is much more CPU

and memory intensive.
javax.xml.transform

Marco Ronchetti -

SAX architecture o

SAXParserFactory factory = SAXParserFactory.newlnstance();
factory.setValidating(true); //optional - default is non-validating
SAXParser saxParser = factory.newSAXParser();
saxParser.parse(File f, DefaultHandler-subclass h)

File containing

input XML
Content
: Handler
3 Default-handler
, (classe che
E T o1 .
! o implementa le
| SAX callback)
. || Reader
g_l:f> DTD .
w) Handler Interfaces implemented
) by DefaultHandler class
JO y (Entity
6 X Resolver

Marco Ronchetti -

Marco Ronchetti -

T S
SAX packages ol

Package

Description

org.xml.sax

Defines the SAX interfaces. The name "org.xml" is the package
prefix that was settled on by the group that defined the SAX API.

org.xml.sax.ext

Defines SAX extensions that are used when doing more
sophisticated SAX processing, for example, to process a document
type definitions (DTD) or to see the detailed syntax for a file.

org.xml.sax.hel
pers

Contains helper classes that make it easier to use SAX -- for
example, by defining a default handler that has null-methods for all
of the interfaces, so you only need to override the ones you actually
want to implement.

javax.xml.parse
rs

Defines the SAXParserFactory class which returns the SAXParser.
Also defines exception classes for reporting errors.

T
SAX callbacks o

Il ContentHandler methods
void characters(char[] ch, int start, int length)

void startDocument()

void startElement(String name, AttributeList attrs)
void endElement(String name)

void endDocument()

void processinglinstruction(String target,String data)

Marco Ronchetti -

Marco Ronchetti -

S Hm(

AX example 0

package jaxp demo;
import org.xml.sax.helpers.DefaultHandler;
import org.xml.sax.*;
import java.io.*;
public class MySaxHandler extends DefaultHandler ({
int indentCount=0;
boolean printContent=true;
String indentString=" "
private void print(String s) { System.out.print(s);}
private void println(String s) { System.out.println(s);}

private void indent () { e
String s=""; Utility methods

for (int i=1;i<=indentCount;i++) s=s+indentString;
print(s) ;

T §
SAX example o

public void startDocument () throws SAXException {
println ("<?xml version='1.0' encoding='UTF-8'°?>") ;

public void endDocument() throws SAXException {
println() ;

1
g
5

=
S
~
o
g
<
p=

Marco Ronchetti -

JO
11

S ng

AX example

public void startElement (String namespaceURI,
String lName, // local name
String gName, // qualified name
Attributes attrs) throws SAXException {
String eName = 1Name; // element name
if ("".equals(eName)) eName = gName;
indent () ;
print ("<" + eName) ;
if (attrs !'= null) {
for (int i = 0; i < attrs.getLength(); i++) {
String aName = attrs.getlocalName(i); // Attr name
if ("".equals(aName)) aName = attrs.getQName (i) ;
print(" ")
print(aName + "=\"" + attrs.getValue(i) + "\"");

}
println(">") ;
indentCount++;

L poM‘-‘x

ocal v. qualified names

Marco Ronchetti -

JO
12

public void startElement (String namespaceURI,
String lName, // local name
String gName, // qualified name
Attributes attrs) throws SAXException {
System.err.println("local="+1Name+" qualified="+gName) ;

<?xml version="1.0" encoding="UTF-8" ?>
<h:SCHOOL xmlns:h="http://somecompany.com/someLocation/"><CLASS>2nd A

If factory.setNamespaceAware (true); the output will be:
local=SCHOOL qualified=h:SCHOOL
local=CLASS qualified=CLASS

Else it will be:
local= qualified=SCHOOL
local= qualified=CLASS

SAX example poﬂm

public void endElement (String namespaceURI,

String sName, // simple name
String gName // qualified name
) throws SAXException {

indentCount--;
indent () ;
println("</" + gName + ">");

Marco Ronchetti -

JO
13

Marco Ronchetti -

JO
14

S ;

AX example

public void characters(char buf[], int offset, int len)
throws SAXException ({
if (printContent) ({
String s=new String(buf, offset, len);
s=s.trim() ;
if (! (s.length()==0)) {
indentCount++;
indent () ;
println(s) ;

indentCount--;

school.xml w“s_ﬂ

<?xml version="1.0" encoding="UTF-8"?>
<SCHOOL><CLASS>2nd A<PROFESSOR>Albert Einstein</
PROFESSOR><STUDENT>Walter Matthau</STUDENT><STUDENT>Jack
Lemmon</STUDENT> <STUDENT>Marylin Monroe </STUDENT>

</CLASS> <CLASS>

3rd B <PROFESSOR>Alan Turing</PROFESSOR> <STUDENT>
Fernando Alonso </STUDENT>

<STUDENT> Jenson Button

</STUDENT> <STUDENT>

Sebastian Vettel </STUDENT>

</CLASS>

</SCHOOL>

Marco Ronchetti -

JO
15

Marco Ronchetti

JO
16

Output (printContent=false

<?xml version='1.0' encoding='UTF-8'?>
<SCHOOL>
<CLASS>
<PROFESSOR>
</PROFESSOR>
<STUDENT>
</STUDENT>
<STUDENT>
</STUDENT>
<STUDENT>
</STUDENT>
</CLASS>
<CLASS>
<PROFESSOR>
</PROFESSOR>
<STUDENT>
</STUDENT>
<STUDENT>
</STUDENT>
<STUDENT>
</STUDENT>
</CLASS>
</SCHOOL>

Output (printContent=true)

<?xml version='1.0' encoding='UTF-8'?> <STUDENT>

<SCHOOL> Fernando Alonso

Marco Ronchetti

JO
17

<CLASS>
2nd A
<PROFESSOR>
Albert Einstein
</PROFESSOR>
<STUDENT>
Walter Matthau
</STUDENT>
<STUDENT>
Jack Lemmon
</STUDENT>
<STUDENT>
Marylin Monroe
</STUDENT>
</CLASS>
<CLASS>
3rd B
<PROFESSOR>
Alan Turing
</PROFESSOR>

</STUDENT>
<STUDENT>
Jenson Button
</STUDENT>
<STUDENT>
Sebastian Vettel
</STUDENT>
</CLASS>
</SCHOOL>

Validation pol|5-Ax

static final String JAXP_SCHEMA_LANGUAGE =
"http:/ /java.sun.com/xml/jaxp/properties/schemalanguage";
static final String W3C_XML_SCHEMA =
"http:/ /www.w3.org/2001/XMLSchema";
static final String JAXP_SCHEMA_SOURCE =
"http:/ /java.sun.com/xml/jaxp/properties/schemaSource";

SAXParserFactory factory = SAXParserFactory.newInstance();
factory.setNamespaceAware(true);

factory.setValidating(true);

SAXParser saxParser = factory.newSAXParser();

saxParser.setProperty (JAXP_SCHEMA_LANGUAGE, W3C_XML_SCHEMA);
saxParser.setProperty (JAXP_SCHEMA_SOURCE, new File(schemaSource));

Marco Ronchetti -

See http:/ /docs.oracle.com/javaee/1.4/tutorial / doc/JAXPSAX9.html

JO
18

Marco Ronchetti -

JO
19

T
SAX references

A full tutorial with more info and details

http://docs.oracle.com/javase/tutorial/jaxp/sax/
parsing.html

DOM architecture o

DocumentBuilderFactory dbf = DocumentBuilderFactory.newlnstance();
dbf.setValidating(true); // optional — default is non-validating
DocumentBuilder db = dbf.newDocumentBuilder();

Document doc = db.parse(file);

Q m Document DOM)
S
XML Data

Marco Ronchetti -

JO
20

Marco Ronchetti -

JO
21

A b e
DOM packages o

Package

Description

org.w3c.dom

Defines the DOM programming interfaces for XML (and,
optionally, HTML) documents, as specified by the W3C.

javax.xml.parsers

Defines the DocumentBuilderFactory class and the
DocumentBuilder class, which returns an object that implements
the W3C Document interface. The factory that is used to create the
builder is determined by the javax.xml.parsers system property,
which can be set from the command line or overridden when
invoking the newlnstance method. This package also defines the
ParserConfigurationException class for reporting errors.

The Node interface poﬂm

public interface Node

The Node interface is the primary datatype for the entire DOM. It
represents a single node in the document tree. While all objects
implementing the Node interface expose methods for dealing with
children, not all objects implementing the Node interface may have
children. For example, Text nodes may not have children, and
adding children to such nodes results in a DOMException being
raised.

The attributes nodeName, nodeValue and attributes are included as a
mechanism to get at node information without casting down to the
specific derived interface. In cases where there is no obvious
mapping of these attributes for a specific nodeType (e.g.,
nodeValue for an Element or attributes for a Comment), this returns
null. Note that the specialized interfaces may contain additional and
more convenient mechanisms to get and set the relevant

JO information.
2

Marco Ronchetti -

The Document interface polﬁ-“x

public interface Document extends Node

The Document interface represents the entire HTML or XML document.
Conceptually, it is the root of the document tree, and provides the primary
access to the document's data. Since elements, text nodes, comments,
processing instructions, etc. cannot exist outside the context of a
Document, the Document interface also contains the factory methods
needed to create these objects. The Node objects created have a

ownerDocument attribute which associates them with the Document within

Marco Ronchetti -

whose context they were created.

JO
23

The Node hierarchy poﬂm

Document CharacterData
|

Comment

1
5
S

g
3
~
o
=
[
=

| mydocument |

<!-- Demo --> [|

hello [comment] [A = id=3" |

The Node hierarchy poﬂm

Marco Ronchetti -

JO
25

/\

Document | | | DocumentType | ||EntityReference Processinglnstruction

DocumentFragment Entity Notation||CharacterData

Y o

Comment

CDATASection

Node: WARNING! g

The implied semantic of this model is
WRONG!

You might deduce that a comment might contain another comment, or
a document, or any other node!

Marco Ronchetti -

The integrity is delegated to a series of Node’s attributes, that the
programmer should check.

JO
26

Node: main methods polﬁ-“x

NAVIGATION
Node getParentNode() The parent of this node.

NodelList getChildNodes() A NodelList that contains all children of this node.
Node getFirstChild() The first child of this node.

Node getLastChild() The last child of this node.

Marco Ronchetti -

Node getNextSibling() The node immediately following this node

Node getPreviousSibling() The node immediately preceding this node.

JO
27

The Node interface poﬂm

Interface nodeName nodeValue attributes

Attr name of attribute value of attribute null

CDATASection "#cdata-section® content of the CDATA null
Section

Comment "#comment® content of the comment | null

Document "#document” null null

DocumentFragment "#document-fragment® | null null

DocumentType document type name | null null

1
o=
=

2]
<
3]
[«
Q
~
o
9]
=
oo}
=

Element tag name null NamedNodeMap

Entity entity name null null

EntityReference name of entity null null
referenced

Notation notation name null null

Processinglnstruction | target entire content excluding | null
the target

Text "H#text" content of the text node | null

Node: main methods polﬁ-“x

INSPECTION

The name of this node, depending on its type; see table.
A code representing the type of the underlying object.

The value of this node, depending on its type; see the table.

Marco Ronchetti -

The Document object associated with this node.

Returns whether this node (if it is an element) has any attributes.

Returns whether this node has any children.

JO
29

Node: main methods polﬁ-“x

EDITING NODES
Node cloneNode(boolean deep)
Returns a duplicate of this node, i.e., serves as a generic copy constructor

for nodes.

void setNodeValue(java.lang.String nodeValue)
The value of this node, depending on its type; see the table.

Marco Ronchetti -

JO
30

Node: main methods polﬁ-“x

EDITING STRUCTURE
Adds the node newChild to the end of the list of children of this node.

Removes the child node indicated by oldChild from the list of children, and
returns it.

Replaces the child node oldChild with newChild in the list of children, and
returns the oldChild node.

Marco Ronchetti -

Inserts the node newChild before the existing child node refChild.

Puts all Text nodes in the full depth of the sub-tree underneath this Node,
including attribute nodes, into a "normal" form where only structure (e.g., elements,
comments, processing instructions, CDATA sections, and entity references)
separates Text nodes, i.e., there are neither adjacent Text nodes nor empty Text

JO nodes.
31

