
J0
32

M
ar

co
 R

on
ch

et
ti

 -

switch (node.getNodeType()) {
case Node.ELEMENT_NODE; …; break;
case Node.ATTRIBUTE_NODE; …; break;
case Node.TEXT_NODE; …; break;
case Node.CDATA_SECTION_NODE; …; break;
case Node.ENTITY_REFERENCE_NODE; …; break;
case Node.PROCESSING_INSTRUCTION; …; break;
case Node.COMMENT_NODE; …; break;
case Node.DOCUMENT_NODE; …; break;
case Node.DOCUMENT_TYPE_NODE; …; break;
case Node.DOCUMENT_FRAGMENT_NODE; …; break;
case Node.NOTATION_NODE; …; break;
default: throw (new Exception());

}

NODE: determining the type

J0
33

M
ar

co
 R

on
ch

et
ti

 -

import java.io.*;
import org.w3c.dom.*;
import org.xml.sax.*; // parser uses SAX methods to build DOM object
import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.DocumentBuilder;

public class CountDom {
public static void main(String[] arg) throws Exception {

if (arg.length != 1) {
System.err.println("Usage: cmd filename (file must exist)");
System.exit(1);

}
Node node = readFile(new File(arg[0]));
System.out.println(arg + " elementCount: " +

getElementCount(node));
}

}

DOM example

J0
34

M
ar

co
 R

on
ch

et
ti

 -

public static Document readFile(File file) throws Exception {
Document doc;
try {
DocumentBuilderFactory dbf =

DocumentBuilderFactory.newInstance();
dbf.setValidating(false);
DocumentBuilder db = dbf.newDocumentBuilder();
doc = db.parse(file);
return doc;

} catch (SAXParseException ex) {
throw (ex);

} catch (SAXException ex) {
Exception x = ex.getException(); // get underlying Exception
throw ((x == null) ? ex : x);

}
}

DOM example

Parse File,
Return Document

J0
35

M
ar

co
 R

on
ch

et
ti

 -

public static int getElementCount(Node node) {
if (null == node) return 0;
int sum = 0;
boolean isElement = (node.getNodeType() == Node.ELEMENT_NODE);
if (isElement) sum = 1;
NodeList children = node.getChildNodes();
if (null == children) return sum;

for (int i = 0; i < children.getLength(); i++) {
sum += getElementCount(children.item(i)); // recursive call

}
return sum;

}
}

DOM example

use DOM methods to count elements:
for each subtree if the root is an Element,
set sum to 1, else to 0;
add element count of all children of the root to sum

J0
36

M
ar

co
 R

on
ch

et
ti

 - "Build a better mousetrap, and the world will
beat a path to your door."

--Emerson

Alternatives to DOM

J0
37

M
ar

co
 R

on
ch

et
ti

 -

JDOM: Java DOM (see http://www.jdom.org).
The standard DOM is a very simple data structure that intermixes text nodes,

element nodes, processing instruction nodes, CDATA nodes, entity
references, and several other kinds of nodes. That makes it difficult to work
with in practice, because you are always sifting through collections of nodes,
discarding the ones you don't need into order to process the ones you are
interested in. JDOM, on the other hand, creates a tree of objects from an XML
structure. The resulting tree is much easier to use, and it can be created from
an XML structure without a compilation step.

DOM4J: DOM for Java (see http://www.dom4j.org/)
dom4j is an easy to use, open source library for working with XML, XPath

and XSLT on the Java platform using the Java Collections Framework
and with full support for DOM, SAX and JAXP. (last release 2010,
Java5)

Alternatives to DOM

http://www.jdom.org/
http://www.dom4j.org/

J0
38

M
ar

co
 R

on
ch

et
ti

 - Using XSLT from Java

Transformations

J0
39

M
ar

co
 R

on
ch

et
ti

 -

TrAX

TransformerFactory tf = TransformerFactory .newInstance();
StreamSource xslSS=new StreamSource(“source.xsl”);
StreamSource xmlSS=new StreamSource(“source.xml”);
Transformer t=tf.newTrasformer(xslSS);
t.transform(xmlSS,new StreamResult(new

FileOutputStream(“out.html”);

java –Djavax.xml.transform.TransformerFactory=
org.apache.xalan.processor.TrasformerFactoryImpl MyClass

J0
40

M
ar

co
 R

on
ch

et
ti

 -

xml.transform packages
Package Description

javax.xml.transfo
rm

Defines the TransformerFactory and Transformer classes, which
you use to get a object capable of doing transformations. After
creating a transformer object, you invoke its transform() method,
providing it with an input (source) and output (result).

javax.xml.transfo
rm.dom

Classes to create input (source) and output (result) objects from a
DOM.

javax.xml.transfo
rm.sax

Classes to create input (source) from a SAX parser and output
(result) objects from a SAX event handler.

javax.xml.transfo
rm.stream

Classes to create input (source) and output (result) objects from an
I/O stream.

J0
41

M
ar

co
 R

on
ch

et
ti

 -

javax.xml.transform.Transformer

transform(Source xmls, Result output)

javax.xml.transform.sax.SAXResult implements Result

javax.xml.transform.sax.SAXSource implements Source

javax.xml.transform.stream.StreamResult implements Result

javax.xml.transform.stream.StreamSource implements Source

javax.xml.transform.dom.DOMResult implements Result

javax.xml.transform. dom.DOMSource implements Source

TrAX main classes

J0
42

M
ar

co
 R

on
ch

et
ti

 -

Java Architecture for XML Binding (JAXB) provides a
convenient way to bind an XML schema to a
representation in Java code.

See also:
• JAX-WS
• JAX-SWA
• JAX- RPC
• SAAJ
• XML –Digital Signatures
• ecc.

Other Java-XML APIs

