NODE: determining the type poﬂsAx

Marco Ronchetti -

JO
32

switch (node.getNodeType()) {

case Node.ELEMENT_NODE; ...; break;

case Node.ATTRIBUTE_NODE; ...; break;

case Node.TEXT_NODE; ...; break;

case Node.CDATA_SECTION_NODE; ...; break;
case Node.ENTITY_REFERENCE_NODE; ...; break;
case Node.PROCESSING_INSTRUCTION; ...; break;
case Node.COMMENT_NODE; ...; break;

case Node.DOCUMENT_NODE; ...; break;

case Node.DOCUMENT_TYPE_NODE; ...; break;
case Node.DOCUMENT_FRAGMENT_NODE; ...; break;
case Node.NOTATION_NODE; ...; break;

default: throw (new Exception());

DOM example w“Slf

Marco Ronchetti -

JO
33

import java.io.*;

import org.w3c.dom.*;

import org.xml.sax.*; // parser uses SAX methods to build DOM object
import javax.xml.parsers.DocumentBuilderFactory;

import javax.xml.parsers.DocumentBuilder;

public class CountDom {
public static void main(String[] arg) throws Exception {
if (arg.length 1= 1) {

System.err.printin("Usage: cmd filename (file must exist)");
System.exit(1);

}
readFile(new File(arg[0]))
getElementCount(node)
}

}

s

DOM example

Marco Ronchetti -

public static Document readFile(File file) throws Exception {

Document doc; Parse File,
try { Return Document
DocumentBuilderFactory dbf =
DocumentBuilderFactory.newlnstance();
dbf.setValidating(false);
DocumentBuilder db = dbf.newDocumentBuilder();
doc = db.parse(file);
return doc;
} catch (SAXParseException ex) {
throw (ex);
} catch (SAXException ex) {
Exception x = ex.getException(); // get underlying Exception
throw ((x == null) ? ex : x);

JO
34

}

DOM example poMsAr

Marco Ronchetti -

public static int getElementCount(Node node) {

if (null == node) return O;

int sum = O;

boolean isElement = (node.getNodeType() == Node.ELEMENT_NODE);
if (isElement) sum = 1;

NodeList children = node.getChildNodes();

if (null == children) return sum;

for (inti = 0; i < children.getLength(); i++) {
sum += getElementCount(children.item(i)); // recursive call

}

] use DOM methods to count elements:
return sum;

for each subtree if the root is an Element,
| set sum to 1, else to O;
} add element count of all children of the root to sum

JO
35

e————————————————————————

Alternatives to DOM o

Marco Ronchetti -

JO
36

"Build a better mousetrap, and the world will
beat a path to your door."
--Emerson

Alternatives to DOM o

Marco Ronchetti -

JO
37

JDOM: (see).

The standard DOM is a very simple data structure that intermixes text nodes,
element nodes, processing instruction nodes, CDATA nodes, entity
references, and several other kinds of hodes. That makes it difficult to work
with in practice, because you are always sifting through collections of nodes,
discarding the ones you don't need into order to process the ones you are
interested in. JDOM, on the other hand, creates a tree of objects from an XML
structure. The resulting tree is much easier to use, and it can be created from
an XML structure without a compilation step.

DOM4J: (see)
dom4j is an easy to use, open source library for working with XML, XPath
and XSLT on the Java platform using the Java Collections Framework
and with full support for DOM, SAX and JAXP. (last release 2010,

Java$l)

http://www.jdom.org/
http://www.dom4j.org/

Transformations

s

Marco Ronchetti -

JO
38

Using XSLT from Java

TrAX EE

Marco Ronchetti -

i i
C—~H-C
.

\\\:,//”’/
Transformation
Instructions

7
TransformerFactory tf = TransformerFactory .newinstance();

StreamSource xsISS=new StreamSource(“source.xsl”);
StreamSource xmISS=new StreamSource(“source.xml”);
Transformer t=tf.newTrasformer(xsISS);

t.transform(xmlSS,new StreamResult(new
FileOutputStream(“out.html”);

JO
39

java -Djavax.xml.transform.TransformerFactory=

s O7'd-apache.xalan.processor.TrasformerFactorylmpl MyClass

xml.transform packages poMsA’r

Marco Ronchetti -

JO
40

Package

Description

javax.xml.transfo pefines the TransformerFactory and Transformer classes, which

rm

javax.xml.transfo
rm.dom

javax.xml.transfo
rm.sax

javax.xml.transfo
rm.stream

you use to get a object capable of doing transformations. After
creating a transformer object, you invoke its transform() method,
providing it with an input (source) and output (result).

Classes to create input (source) and output (result) objects from a
DOM.

Classes to create input (source) from a SAX parser and output
(result) objects from a SAX event handler.

Classes to create input (source) and output (result) objects from an
I/O stream.

TrAX main classes

Marco Ronchetti -

JO
41

javax.xml.transform.Transformer
transform(Source xmls, Result output)

javax.xml.transform.sax.SAXResult implements Result
javax.xml.transform.sax.SAXSource implements Source

javax.xml.transform.stream.StreamResult implements Result
javax.xml.transform.stream.StreamSource implements Source

javax.xml.transform.dom.DOMResult implements Result
javax.xml.transform. dom.DOMSource implements Source

Other Java-XML APIs g

Marco Ronchetti -

Java Architecture for XML Binding (JAXB) provides a
convenient way to bind an XML schema to a
representation in Java code.

See also:

e JAX-WS

e JAX-SWA

* JAX-RPC

* SAA]J

* XML -Digital Signatures
* ecc.

