Distributed Objects

Remote Method Invokation

~
J

. . §= ;: Application Facade ’\‘
ZW Coococmcscscscsscsooooeoes
Distributed Systems 85 g)/ oo) e |
= . Workflow J\ Components /| Entities
r
.‘.a " Data Access |/ Data Helpers/ Service
gs \ Components /i Utilities Agents

Ul Components

Data
Sources

Ul Process Components

PRESENTATION
LAYER

Object 1

invoke method

Object 2

Client Host/Process

invoke method

Server Host/Process

Object 1

] Object 2

RMI

A Y
RMI
Server
URL
protocol === == >

Locate remote objects. Applications can use various mechanisms to
obtain references to remote objects. For example, an application
can register its remote objects with RMI's simple naming facility, the
RMI registry. Alternatively, an application can pass and return
remote object references as part of other remote invocations.

Communicate with remote objects. Details of communication
between remote objects are handled by RMI. To the programmetr,
remote communication looks similar to regular Java method
invocations.

Load class definitions for objects that are passed around. Because
RMI enables objects to be passed back and forth, it provides
mechanisms for loading an object's class definitions as well as for
transmitting an object's data.

Distributed Objects

Remote Method Invokation:
How does it work?

The conceptual model

Local — Remote -

Client Host/Process Server Host/Process
Object 1 Object 2
“Post Office” | < > | “Post Office”
socket

Interaction

Local —
Client Host/Proces

Object 1

N\

Stub of Object 2

< - -

-—»

Remote-
Server Host/Process

Object 2

i

Skeleton of Object 2

Local —\
Client Host/P

Remote-
Server Host/Process

roce
Interface
Object 1)
'\\(: A
Stub of Object 2 €~ -f---------~

-—»

Object 2

N

Skeleton of Object 2

Distributed Objects

A “do it yourself” implementation

A “do it yourself’ implementation

1. Person: the interface

package distributedobjectdemo;

public interface Person {

}

public int getAge() throws Throwable;
public String getName() throws Throwable;

package distributedobjectdemo; 2. Person: The class

public class PersonServer implements Person{
int age;
String name;
public PersonServer(String name,int age){
this.age=age;
this.name=name;
hs
public int getAge(){
return age;
bs
public String getName(){
return name;
be
public static void main(String a[]) {
PersonServer person = new PersonServer("Marko", 45);
Person_Skeleton skel = new Person_Skeleton(person);
skel.start();
System.out.printin("server started");

h
H

3. Person: the skeleton

package distributedobjectdemo;
import java.net.Socket;

import java.net.ServerSocket;
import java.io.*;

public class Person_Skeleton extends Thread {
PersonServer myServer;
int port=9000;

public Person_Skeleton(PersonServer server) {
this.myServer=server;

H

// la classe continua...

3. Person: the skeleton

public void run(){
Socket socket = null;
ServerSocket serverSocket=null;

try {
serverSocket=new ServerSocket(port);

he
catch (IOException ex) {

System.err.printin("error while creating serverSocket");
ex.printStackTrace(System.err); System.exit(1);

}

while (true) {

try {
socket=serverSocket.accept();

System.out.printin("Client opened connection”);

he
catch (IOException ex) {

System.err.printin("error accepting on serverSocket");
ex.printStackTrace(System.err); System.exit(1);

H

// il metodo continua...

3. Person: the skeleton

try {
while (socket!=null){

ObjectInputStream instream=
new ObjectInputStream(socket.getInputStream());
String method=(String)instream.readObject();
if (method.equals("age™)) {
int age=myServer.getAge();
ObjectOutputStream outstream=
new ObjectOutputStream(socket.getOutputStream());
outstream.writeInt(age);
outstream.flush();
¥ else if (method.equals("name™)) {
String name=myServer.getName();
ObjectOutputStream outstream=
new ObjectOutputStream(socket.getOutputStream());
outstream.writeObject(name);
outstream.flush();

}
H

/ /prosegue con il catch...

A “do it yourself’ implementation 3. Person: the skeleton

» catch (IOException ex) {
if (ex.getMessage().equals(”"Connection reset")) {
System.out.printin("Client closed connection");
¥} else {
System.err.printin("error on the network");
ex.printStackTrace(System.err); System.exit(2);
bs
¥} catch (ClassNotFoundException ex) {
System.err.printin("error while reading object from the net");
ex.printStackTrace(System.err); System.exit(3);
by
¥/ /fine del ciclo while(true)
¥ //fine del metodo run
¥ //fine della classe

4. Person: the stub

package distributedobjectdemo;
import java.net.Socket;
import java.io.*;

public class Person_Stub implements Person {
Socket socket;
String machine="localhost";
int port=9000;

public Person_Stub() throws Throwable {
socket=new Socket(machine,port);

}

protected void finalize(){
System.err.printin("closing");
try { socket.close(); }

catch (IOException ex) {ex.printStackTrace(System.err); }
bs

// la classe continua...

4. Person: the stub

public int getAge() throws Throwable {
ObjectOutputStream outstream=
new ObjectOutputStream(socket.getOutputStream());
outstream.writeObject("age");
outstream.flush();
ObjectInputStream instream=
new ObjectInputStream(socket.getInputStream());
return instream.readInt();

}

public String getName() throws Throwable {
ObjectOutputStream outstream=new
ObjectOutputStream(socket.getOutputStream());
outstream.writeObject("name");
outstream.flush();
ObjectInputStream instream=
new ObjectInputStream(socket.getInputStream());
return (String)instream.readObject();

}

¥} // fine della classe

5. Person: the client

package distributedobjectdemo;
public class Client {

public Client() {

try {
Person person=new Person_Stub();
int age=person.getAge();
String name=person.getName();
System.out.printin(nhame+" is "+age+" years old");

bs

catch (Throwable ex) {
ex.printStackTrace(System.err);

}

bs
public static void main(String[] args) {
Client clientl = new Client();

¥
}

Open issues

-multiple instances

—Automatic stub and skeleton generation
—on demand server dentification

-on demand remote class activation

Broker

Registry

C (S,

Distributed Objects

An RMI basic implementation

(example taken from
https://www.mkyong.com)

Remote Interface

package it.unitn.rmiinterface; 1. Detine the common interface

import java.rmi.Remote;

import java.rmi.RemoteException;

public interface RMIInterface extends Remote {

public String helloTo(String name) throws RemoteException;

package it.unitn.rmiserver;

The S CIver import java.rmi.Naming;

import java.rmi.RemoteException;

import java.rmi.server.UnicastRemoteObject;

2. Implement the service import it.unitn.RMIInterface;

public class ServerOperation extends UnicastRemoteObject
implements RMIInterface{

private static final long serialVersionUID = 1L;

protected ServerOperation() throws RemoteException {
super();

@Override
public String helloTo(String name) throws RemoteException{

System.err.println(name + " is trying to contact!");
return "Server says hello to " + name;

The Server

import java.rmi.registry.¥*;
LocateRegistry.createRegistry (1099) ;

3. Create Registry

The Server

public static void main(String[] args){

try { 4. Register yourself

Naming.rebind("//localhost/MyServer", new

ServerOperation());
System.err.println("Server ready");
} catch (Exception e) {
System.err.println("Server exception: " +
e.toString());

e.printStackTrace();

package it.unitn.rmiclient

r]?}l 1° import java.net.MalformedURLException
C C 1€ﬁt import java.rmi.Naming

import java.rmi.NotBoundException
import java.rmi.RemoteException
import javax.swing.JOptionPane
import it.unitn.RMIInterface

public class ClientOperation {
private static RMIInterface remoteObj;
public static void main(String[] args)

throws MalformedURLException, RemoteException,
NotBoundException {

S.IQOOqu) remoteObj = (RMIInterface) Naming.lookup("//

The Service localhost/MyServer");

String txt = JOptionPane.showInputDialog("What 1is
your name?");

6. Use Service | String response = remoteObj.helloTo(txt);
JOptionPane.showMessageDialog(null, response);

Deploy

COMPILE:

javac src/it/unitn/rmiinterface/RMIInterface.java src/it/unitn/
rmiserver/ServerOperation.java src/it/unitn/rmiclient/
ClientOperation. java

START REGISTRY
cd src

start rmiregistry

START SERVER
cd src

java it.unitn.rmiserver.ServerOperation

START CLIENT
cd src

java it.unitn.rmiclient.ClientOperation

C:\Users\Public\My Projects\SimpleRMIExample>cd src

C:\Users\Public\} j \Simp cample\src>java com.mkyong.rmiclient.ClientOpera

What is your name?

OK Cancel

CAWINDOWS\system32\cmd.exe - java com.mkyong.rmiserver.ServerOperation — O X

\Users\Public\My Projects\SimpleRMIExample>
rs\Public\My Projects\SimpleRMIExample)

\Public\My Projects\SimpleRMIExample\src>java com.mkyong.rmiserver.ServerOperation

erver Y‘P.—i(f‘)’

Marilena is vying to contact!

