
Fondamenti di Java

Static

Modificatori: static

Variabili e metodi associati ad una
Classe anziche’ ad un Oggetto
sono definiti “static”.

Le variabili statiche servono come
singola variabile condivisa tra le varie istanze

I metodi possono essere richiamati senza creare una istanza.

Variabili “static”: esempio 1
public class S {

static int instanceCount = 0; //variabile “di classe”
S() {instanceCount++;}

}
public class A {

public static void main(String a[]) {
new A();

}
A() {

for (int i = 0; i < 10; ++i) {
S instance=new S();

}
System.out.println("# of instances:
"+S.instanceCount);

}
}

Output:
of instances: 10

Variabili “static”: esempio 2
class S {

static int instanceCount = 0; //variabile “di classe”
S() {instanceCount++;}
public void finalize() {instanceCount--;}

}
public class A {

public static void main(String a[]) {
new A();

}
A() {

for (int i = 0; i < 10; ++i) {
S instance=new S();

}
System.out.println("# of instances:"+S.instanceCount);
System.gc();
System.out.println("# of instances: "+S.instanceCount);

}
}

Output:
of instances: 10
of instances: 0

Metodi “static”: esempio 1
class S {

static int instanceCount = 0; //variabile “di classe”
S() {instanceCount++;}
static void azzeraContatore() {instanceCount=0;}

}
public class A {

public static void main(String a[]) {
new A();

}
A() {

for (int i = 0; i < 10; ++i) {
if (i%4==0) S.azzeraContatore();
S instance=new S();

}
System.out.println("instanceCount:

"+S.instanceCount);
}

}

Output:
instanceCount: 2

Può agire solo su
variabili statiche!

Ruolo:
Metodi che agiscono su

variabili statiche

metodi “static”: esempio 2

Math.sqrt(double x);
System.gc();

System.arrayCopy(...);
System.exit();

Integer.parseInt(String s);
Float.parseFloat(String s);

Notare la
maiuscola!

(per convenzione)

Che cos’e’:
System.out.println() ?

Ruolo:
analogo alle
librerie del C

Attenzione!

Usare variabili static per condividere informazioni
è una CATTIVA PRASSI.

• Le variabili globali violano il principio di
encapsulazione dello stato nell’oggetto.

• Quando usate, dovrebbero in genere essere
static final

• Il ciclo di vita delle variabili globali è “eterno”:
vengono istanziate a inizio esecuzione e
restano vive fino alla fine.

• Presentano problemi in caso di multithreading

7

Perchè il main è “static”?
public class A {

String s="hello";
public static void main(String a[]) {

System.out.println(s);
}

}
Non static variable s cannot be referenced from static

context

public class A {
String s="hello";
public static void main(String a[]) {

new A();
}
A() {

System.out.println(s);
}

}
hello

Parametri di ingresso
/* sum and average command lines */
class SumAverage {

public static void main (String args[]) {
int sum = 0;
float avg = 0;
for (int i = 0; i < args.length; i++) {

sum += Integer.parseInt(args[i]);
}

System.out.println("Sum is: " + sum);
System.out.println("Average is: "

+ (float)sum / args.length);
}

}

I parametri del
main sono inclusi
in un vettore di

String

Parametri di ingresso – altro esempio
/* sum and average command lines */
class ElementShower{

public static void main(String a[]){
System.out.println(a.length);
int arg=0;
for (String s:a) {

System.out.println("argomento "+
(++arg)+" : "+s);

}
}

}

Parametri di ingresso
in IntelliJ

Posizionamento di componenti
in Java FX

Posizionamento di un Node

Non vengono forniti metodi per il
posizionamento assoluto …
n es., setX, setY
n sono tuttavia presenti in alcune sottoclassi

… in compenso sono definiti i metodi
setLayoutX, setTranslateX

A cosa servono?

Posizionamento di un Node

La responsabilità di posizionare il
contenuto è delegata ad una
componente specifica.

In FX è attribuita ad un tipo particolare di
contenitori (Parent): i Pane

FX vs. Swing and Android architectures

View

ViewGroup

Layout

Component

Container
Layout

Node

Parent

Pane

Various
types of
Layouts

Android

Swing

Java FX

contenitori con una loro regola di posizionamento delle componenti

Posizionamento automatico
mediante layout

L’idea è di semplificare il compito del
programmatore definendo contenitori di
oggetti che vengono posizionati secondo regole
prestabilite.

Il contenitore può ignorare i desideri della
componente (espressi da setLayoutX)

La disposizione delle componenti è “liquida”

Posizionamento automatico
mediante layout

Fondamentale nel progetto di interfacce

JavaFX fornisce numerosi “layout managers”

Lettura raccomandata:
https://docs.oracle.com/javase/8/jav
afx/layout-tutorial/index.html

Aggiunta-rimozione di elementi

Attenzione!
Aggiunta e rimozione di elementi vengono effettuati dalla lista

dei figli (children), con i metodi
add(Node x), addAll(Collection<Node> c),
remove(Node x), , removeAll(Collection<Node> c)

Polygon triangolo= new Polygon();
triangolo.getPoints().addAll(new Double[]{

0.0, 0.0,20.0, 10.0, 10.0, 20.0 });
Circle cerchio=new Circle(10,10,10);
layout.getChildren().addAll(cerchio,triangolo);
…
layout.getChildren().remove(cerchio);

z

Layout managers predefiniti

HBox

public class Layout1 extends Application {
public void start(Stage stage) {

Pane layout = new HBox();
layout.getChildren().add(new Button("Uno"));
layout.getChildren().add(new Button("Due"));

layout.getChildren().add(new Button("Tre"));
Group root = new Group(layout);
Scene scene = new Scene(root);
stage.setScene(scene);
stage.show();

}
…

}
Allinea in orizzontale

HBox

public class Layout1 extends Application {
public void start(Stage stage) {

Pane layout = new HBox();
layout.getChildren().add(new Button("Uno"));
layout.getChildren().add(new Button("Due"));

layout.getChildren().add(new Button("Tre"));
//Group root = new Group(layout);
Scene scene = new Scene(layout);
stage.setScene(scene);
stage.show();

}
…

}

Nota: è possibile creare una Scene
direttamente da un Parent generico, quindi

anche da un Pane o sottoclasse, ma
attenzione: ognuno ha un suo allineamento

predefinito

VBox

public class Layout1 extends Application {
public void start(Stage stage) {

Pane layout = new VBox();
layout.getChildren().add(new Button("Uno"));
layout.getChildren().add(new Button("Due"));
layout.getChildren().add(new Button("Tre"));
Scene scene = new Scene(layout);
stage.setScene(scene);
stage.show();

}
…
}

Allinea in verticale

FlowPane
public class Layout1 extends Application {

public void start(Stage stage) {
FlowPane layout = new FlowPane();

layout.setPrefWrapLength(100);
layout.getChildren().add(new Button("Uno"));
layout.getChildren().add(new Button("Due"));
layout.getChildren().add(new Button("Tre"));
stage.setScene(layout);

stage.show();
}…

}
Organizza gli elementi in una sequenza

continua, che va «a capo» a una
distanza configurabile

StackPane

public class Layout1 extends Application {
public void start(Stage stage) {

StackPane layout = new StackPane();
layout.getChildren().add(new Button("Uno"));
layout.getChildren().add(new Button("Due"));

layout.getChildren().add(new Button("Tre"));
Scene scene = new Scene(layout);
stage.setScene(scene);
stage.show();

}
…
}

Impila gli elementi

StackPane
public class Layout1 extends Application {

public void start(Stage stage) {
StackPane stack = new StackPane();
Circle helpIcon = new Circle(15, 15, 15);
helpIcon.setFill(Color.YELLOW);
helpIcon.setStroke(Color.GREEN);
Text helpText = new Text("?");
helpText.setFont(Font.font("Verdana", FontWeight.BOLD, 18));
helpText.setFill(Color.WHITE);
helpText.setStroke(Color.RED);
stack.getChildren().addAll(helpIcon, helpText);
stack.setAlignment(Pos.CENTER);
Scene scene = new Scene(stack);
stage.setTitle("My JavaFX Application");
stage.setScene(scene);
stage.show();

}
…
}

StackPane è utile per creare
«overlay» di elementi

AnchorPane
public void start(Stage stage) {

AnchorPane layout = new AnchorPane();
Button buttonSave = new Button("Save");
Button buttonCancel = new Button("Cancel");
HBox hb = new HBox();
hb.setPadding(new Insets(0, 10, 10, 10));
hb.setSpacing(10);
hb.getChildren().addAll(buttonSave, buttonCancel);
Rectangle r=new Rectangle(100,100);

layout.getChildren().addAll(r,hb);
layout.setBottomAnchor(hb, 8.0);
layout.setRightAnchor(hb, 5.0);
layout.setTopAnchor(r, 10.0);
layout.setLeftAnchor(r, 50.0);
Scene scene = new Scene(layout);
stage.setScene(scene);
stage.show();

} Permette di «ancorare»
elementi a una zona

TilePane
public class Layout1 extends Application {

public void start(Stage stage) {
TilePane layout = new TilePane();
layout.setVgap(10);
layout.setHgap(20);
layout.setPrefColumns(2);
layout.getChildren().add(new Button("Uno"));
layout.getChildren().add(new Button("Due"));
layout.getChildren().add(new Button("Trentatre"));

Scene scene = new Scene(layout);
stage.setScene(scene);
stage.show();

}
…}

Organizza gli elementi in una griglia
di celle di eguale dimensione

public void start(Stage stage) {
GridPane layout = new GridPane(); int width=100; int height=40;

Scene scene = new Scene(layout, width, height, Color.BLANCHEDALMOND);
layout.add(new Text("0, 0"), 0, 0);
layout.add(new Button("0, 1"), 0, 1);
layout.add(new Text("1, 1"), 1, 1);
Rectangle r = new Rectangle(80,30);
layout.add(r, 1, 2);
layout.add(new Button("1, 3"), 1, 3);
layout.add(new Button("2,3"), 2, 3);
layout.add(new Button("4, 0"), 4, 0);
layout.add(new Text("4, 2"), 4, 2);

ColumnConstraints column1 = new ColumnConstraints(100);
ColumnConstraints column2 = new ColumnConstraints();
column2.setPercentWidth(40);
column2.setHgrow(Priority.ALWAYS);
layout.getColumnConstraints().addAll(column1, column2);
stage.setScene(scene);
stage.show();

}

GridPane

Organizza gli elementi in una griglia di cui
non è necessario dare dimensione prefissata

vedi
documentazi

one!

Identificazione dell’elemento (i,j) in un
GridPane
/**
* implementazione generale del metodo per trovare quale elementi si trovi
* in posizione i,j in un GridPane.
* @param dp il GridPane in cui cercare
* @param i riga
* @param j colonna
* @return l'elemento trovato
*/
Node getElementAt(GridPane gp, int i, int j) {

for (Node x :gp. getChildren()) {
if ((GridPane.getRowIndex(x) == i) &&

(GridPane.getColumnIndex(x) == j)) {
return x;

}
}
return null;

}

GridPane ha molti
metodi interessanti e

utili, ma ne manca uno
che restituisca l’oggetto
che si trova in posizione

i,j nella matrice.
Possiamo supplire così:

BorderPane
public class Layout1 extends Application {

public void start(Stage stage) {
BorderPane layout=new BorderPane();

Button top = new Button("Top");
BorderPane.setAlignment(top, Pos.TOP_CENTER);
layout.setTop(top);
layout.setBottom(new Button("Bottom"));
layout.setLeft(new Button("Left"));
layout.setRight(new Button("Right"));
layout.setCenter(new Button("Center"));
Scene scene = new Scene(layout);

stage.setScene(scene);
stage.show();

}
…
}

Organizza gli
elementi in

«zone»

Combinazioni di layout
StackPane

BorderPane

HBox

VBox

GridPane

HBox

AnchorPane

FlowPane
or TilePane

Container classes that automate common
layout models

The HBox class arranges its content nodes horizontally in a single row.
The VBox class arranges its content nodes vertically in a single column.
The StackPane class places its content nodes in a back-to-front single

stack.
The TilePane class places its content nodes in uniformly sized layout

cells or tiles
The FlowPane class arranges its content nodes in either a horizontal or

vertical “flow”, wrapping at the specified width (for horizontal) or
height (for vertical) boundaries.

The BorderPane class lays out its content nodes in the top, bottom,
right, left, or center region.

The AnchorPane class enables developers to create anchor nodes to
the top, bottom, left side, or center of the layout.

The GridPane class enables the developer to create a flexible grid of
rows and columns in which to lay out content nodes.

To achieve a desired layout structure, different containers can be
nested within a JavaFX application.

Posizionamento assoluto: Pane
public void start(Stage primaryStage) {

primaryStage.setTitle("Hello World!");
Button btn = new Button();
btn.setText("'Hello World'");
btn.setLayoutX(250);
btn.setLayoutY(220);
Pane pane= new Pane();
pane.getChildren().add(btn);

Group root = new Group(pane);
primaryStage.setScene(new Scene(root, 300, 250));
primaryStage.show();

}

In generale, da
evitare!

Diciamo alla
componente dove
vogliamo che lei si

posizioni

Problemi con il posizionamento…

È possibile modificare il posizionamento
automatico degli elementi
n setLayoutX e setTranslateX (e analoghi

per la Y)

NOTA: in genere layoutX è stabilito dal contenitore,
cambiarlo a mano non serve a nulla!

Dalle API…

The node's final translation will be computed as
layoutX + translateX, where layoutX establishes
the node's stable position and translateX optionally
makes dynamic adjustments to that position.

If the node is managed and has a Region (or
subclass) as its parent, then the layout region will
set layoutX according to its own layout policy.

If the node is unmanaged or parented by a Group,
then the application may set layoutX directly to
position it.

Esempio
di
posizio-
namento
public class MoveBall extends Application{
@Override
public void start(Stage primaryStage) {
Circle c = new Circle(200, 200, 10);
c.setFill(Color.AQUAMARINE);
Button btn = new Button();

btn.setText("Move circle");
btn.setOnAction(new Controller(c));
VBox root = new Vbox();
root.getChildren().addAll(c, btn);
Scene scene = new Scene(root, 100, 50);
primaryStage.setScene(scene);
primaryStage.show();

}

class Controller implements EventHandler<ActionEvent>{
int inc = 0; Circle c; Controller(Circle c)

@Override
public void handle(ActionEvent event) {

inc += 10;
c.setLayoutX(inc % 100);
//c.setCenterX(inc % 100);

//c.setTranslateX(inc % 100);
System.out.println(c.getLayoutX()

+ " " + c.getTranslateX()+" "+c.getCenterX());}}

Settando la LayoutX…

class Controller implements EventHandler<ActionEvent>{
int inc = 0; Circle c; Controller(Circle c)

@Override
public void handle(ActionEvent event) {

inc += 10;
c.setLayoutX(inc % 100);
//c.setCenterX(inc % 100);

//c.setTranslateX(inc % 100);
System.out.println(c.getLayoutX()

+ " " + c.getTranslateX()+" "+c.getCenterX());}}

I dati cambiano, ma non funziona:
il cerchio non si muove!

Provando con CenterX…

class Controller implements EventHandler<ActionEvent>{
int inc = 0; Circle c; Controller(Circle c)

@Override
public void handle(ActionEvent event) {

inc += 10;
//c.setLayoutX(inc % 100);
c.setCenterX(inc % 100);

//c.setTranslateX(inc % 100);
System.out.println(c.getLayoutX()

+ " " + c.getTranslateX()+" "+c.getCenterX());}}

Non funziona neanche così…

e finalmente con setTranslateX…

class Controller implements EventHandler<ActionEvent>{
int inc = 0; Circle c; Controller(Circle c)

@Override
public void handle(ActionEvent event) {

inc += 10;
//c.setLayoutX(inc % 100);
//c.setCenterX(inc % 100);
c.setTranslateX(inc % 100);

System.out.println(c.getLayoutX()
+ " " + c.getTranslateX()+" "+c.getCenterX());}}

Funziona!

Dimensionamento e allineamento
È possible dimensionare direttamente gli elementi

n Es., btn.setPrefWidth(200);
… oppure specificare vincoli sulle dimensioni

n Es., btn.setMinWidth(100);

Per esempi di dimensionamento e allineamento:
https://docs.oracle.com/javase/8/jav
afx/layout-tutorial/size_align.htm

FXML – noi non lo trattiamo.

Anche grazie all’idea del posizionamento liquido, è
possibile definire le componenti fuori dal codice,
usando una programmazione dichiarativa (files
XML in Android e FXML in JavaFX)

<BorderPane id="borderPane" xmlns:fx=http://javafx.com/fxml
prefHeight="200" prefWidth="320”>
<stylesheets>

<URL value="@form.css"/>
</stylesheets>
<top>

<Text text="Who are you?"/>
</top>
<center>

<TextField id="textfield" fx:id="textfield"/>
</center>

</BorderPane>

http://javafx.com/fxml

Quasi classi: enum

Esempio:
i semi delle

carte

Cuori Picche
Cuori Picche

0 3
-3

Cuori
Quadri
Fiori
Picche

public static void main(String a[]) {
Seme c=Seme.Cuori;
Seme p=Seme.Picche;
System.out.println(c.name()+" "+p.name());
System.out.println(c+" "+p); // usa toString()

System.out.println(c.ordinal()+" "+p.ordinal());
System.out.println(c.compareTo(p));

for (Seme x:Seme.values()) {
System.out.println(x);

}
}

Soluzione con le enum (def. di tipo di dato
e relativi valori ammessi!)

enum Seme { Cuori, Quadri, Fiori, Picche }

Soluzione con le stringhe (def. di variabile)
static final String seme[] {"Cuori", "Quadri", "Fiori",
"Picche"};

