How are Objects defined in
JavaScript?

Introduzione alla programmazione web — Marco Ronchetti 2020 — Universita di Trento

JavaScript is confusing for developers coming
from Java or C++, as it's all dynamic, all runtime,
and it has no classes at all.

It's all just instances (objects).

Even the "classes" we simulate (introduced in
ES5) are just a function object.

from developer.mozilla.org

Javascript objects as data structures

Javascript objects are
collections of named values (properties)

var person = {firstName:'"Dorothea",
lastName:"Wierer", birthyear:1990};

Javascript objects can contain also methods

var person = {firstName:"Dorothea'",
lastName: "Wierer", birthyear:1990,
fullName: function() {return this.firstName

+ " " + this.lastName;}};

Accessing properties

person. firstName

IS equivalent to

person["firstName"] ;

and to

var x="firstName";

person|x] ;

Dynamic management of objects

You can dynamically add new properties to an existing
object by simply giving it a value.

var person = {firstName:"Dorothea",

lastName: "Wierer", birthyear:1990};
person.birthplace="Brunico;

You can also delete existing properties.

delete person.firstName;

Hence, Javascript objects can also be created empty
and populated later.

var person = {};
person.firstName="Dorothea'";

person. lastName:'"Wierer";
person. birthyear:1990;
person. fullName=function() ({

return this.firstName + " " +
this.lastName; };

If you come from a language like Java, where
objects are instances of classes, you will notice
that the "Object"” notion of Javascript is quite
different!

For instance:

* you can not change the structure of a Java
object, but you can change the structure of
a JavaScript object!

* you cannot have objects without class in
Java, but you do in JavaScript!

Other ways to create object

var objectl = new Object() ;
Object.defineProperty (
objectl, 'name',6 {
value: "AA",
writable: false
}) s
objectl.name = 77;

document.write (objectl.name) ;

OUTPUT: if writable:true; OUTPUT.
AA 77

(but no error)

Object constructors: templates for creating objects of a
certain type (somehow similar to the concept of "class").

function Rectangle(w, h) {

this.width=w: :/ Instance variables
this.height=h;

this.area=function() {return this.width*this.height}
) .
h

— method
a=new Rectangle(3,4); a.area() => 12 a.width=>3

The constructor function is JavaScript's version of a class.

<script>
p = (n,s) => document.write(n+":"+s+"
");
function Rectangle(w, h) {

this.width=w;

this.height=h;

this.area=function|() {

return this.width*this.height}

}
a=new Rectangle(2,3); OUTPUT:
b=new Rectangle (2, 3); 6:6
p(a.area() ,b.area()); 10:6
a.area=function() {return this.width*5}
p(a.area() ,b.area());
</script>

11

What are prototypes?

Introduzione alla programmazione web — Marco Ronchetti 2020 — Universita di Trento

The approach we have shown 1s not the most

efficient in terms of memory allocation, as for every
Rectangle we instantiate the area method!

It would be better to use the “prototype” feature.

Rectangle.prototype.area=function () {
return this.w*this.h

Prototype

The Prototype 1s a separate naming space, shared by all
instances of the same constructor/class

function Person(first, last) {
this.firstname = first;
this.lastname = last;

}

Person.prototype. fullname= function () {

return this.firstname+" "+this.lastname

};

Person.prototype.nickname="The Best";

let personl = new Person('Dorothea’', 'Wierer');

let person2 = new Person('Valentino',6 'Rossi'); OUTPUT:

console.log(personl.nickname) ;

console.log(person2.nickname) ; The Best
Person.prototype.nickname="The Champion"; The Best
console.log(personl.nickname) ; The Champion

console.log (person2.nickname) ;

Prototype

The Object.create() method creates a new object, using an
existing object as the prototype of the newly created

object.

OUTPUT:
The Best

The Best
The Champion

15

How can | inspect objects?

Introduzione alla programmazione web — Marco Ronchetti 2020 — Universita di Trento

<script>f
X = new Rectangle(3,4);
for (e in x) { // loop over all properties

console.log(e+" "+x[e]);

} / N

name of the property value of the property

If you only want to consider properties attached to the object itself,

and not its prototypes,
use getOwnPropertyNames()
or perform a hasOwnProperty() check.

propertylsEnumerable() can also be used.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/getOwnPropertyNames
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/hasOwnProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/propertyIsEnumerable

* 6000 @m0

(x (] CElements Console Sources Network »

T — — Using the console

9 <script>
10 function Person(first, last) {
1 // property and method definitions
12 this.name » {
15 b jname
16 this.fullconstructor Person p
17 } hasOwnProperty Ob,cct [w ﬂ Elements Console Sources Network Performance Memory » ¢ X
18 let personl = "“AsPrototypeO' —
19 le. L
20 22221;,”(”rscpropertyIsEnwcroble [IH ol
21 </body> ‘tolocaleString 5 <title>(CSS-P demo</title>
Line 15, Column 12 toString 6 </head>
0 ‘valueOf | 7 <body=>
i Console What's New defineGetter 8 <hl>this is a web page, greeting the console</hl>
e — {— - . 9 <script>
[© top y—defineSetter__ .10 function Person(first, last) {
—\ookupGetter__ Co1n // property and method definitions
» = 1message Dorothel lookupSetter__ 12 this.name = {
> personl.__proto__ 13 *first': first,
> O Twrmes... L tullneme 14 . ‘last' : last
© Noerrors T rame 15 ;
’ ‘:"”M IfUI 16 this.fullname= function () {return this.name.first+" "+this.name.last};
£ Nowamings = J 17 }
» @ 1info 18 let personl = new Person('Dorothea', 'Wierer');
19 personl.name.first="AAA";
£ No verbose 20 console. log(personl.fullname());
21 </script>
22 </body>
23 </html>
24
25
{} Line 18, Column 20 [4]
: Console What's New X
4 ©® top Y @ | Filter Default levels ¥ o
P = 1 messaw AAA Wierer prova.htm1:20
» @ 1 > personl. fullname()
r mes...
usermes "AAA Wierer"
© Noerrors
A, No warnings
» @ 1info
No verbose

18

Can | have object inheritance in
JavaScript?

Introduzione alla programmazione web — Marco Ronchetti 2020 — Universita di Trento

Using an object as
prototype of another object

function Person () {
this.isHuman=false;
this.printIntroduction=function () {
document.write ("My name is "+this.name+

". Am I human? "+this.isHuman) ;

}

pippo=new Person() ;

pippo.printIntroduction() ; My name is
undefined.

Am I human? false
const me = Object.create (pippo) ;

// "name" is a property set on "me",

// but not on "person"

me.name = 'Matthew';

// inherited properties can be overwritten
me.isHuman = true;

My name is Matthew.
me.printIntroduction() ; Am I human? true"

Prototype

Moreover, the Prototype 1s used for providing a sort of
inheritance.

posont | B[oson | D[vi

Prototype-based inheritance -1

function Person(first, last) {
this.firstname = first;
this.lastname = last;
}
Person.prototype.nickname="The Best";
Person.prototype. fullname= function () {
return this.firstname+" "+this.lastname};

function Athlete(first, last, sport) {
Person.call (this,first,6 last);
this.sport=sport;
}
Athlete.prototype = Object.create (Person.prototype) ;
Object.defineProperty (Athlete.prototype, 'constructor',6 ({
value: Athlete,
enumerable: false,

so that it does not J

writable: true }); Lappearin 'for in' loop

Prototype-based inheritance - 2

let personl = new Athlete('Dorothea', 'Wierer', 'Biathlon');
new Athlete('Valentino',6 'Rossi', 'Moto GP') ;

let person2

console.log(personl. fullname()+" "+personl.sport+" "+personl.nickname) ;
console.log(person2.fullname()+" "+person2.sport+" "+person2.nickname) ;

: Console What's New p'e
{4 © top Yy @ | Fiter Default levels v o
» = 2 messages Dorothea Wierer Biathlon The Best prova.html:38

Valentino Rossi Moto GP The Best prova.html:39

v & 2user mes... ,

function Person(first, last) {
this.firstname = first;
this.lastname = last;

Prototype- |,

baSEd Person.prototype = Object.create (Object.prototype);
s = Object.defineProperty (Person.prototype, 'constructor',6
inheritance |

value: Person,

B 3 enumerable: false,
writable: true }); IMPLICIT

Person.prototype.nickname='"The Best";

Person.prototype. fullname= function () {
return this.firstname+" "+this.lastname};

function Athlete(first, last, sport) {
Person.call (this,first,last);
this.sport=sport;
}
Athlete.prototype = Object.create (Person.prototype) ;
Object.defineProperty (Athlete.prototype, 'constructor',6 ({
value: Athlete,
enumerable: false,
writable: true });

Prototype-based inheritance - 4

In the constructor we define the instance variables of our instances.

In the prototype we define the methods, and the variables shared by all our instances.
By invoking the "superclass"” constructor, we inherit its instance variables.

By associating or prototype to the "superclass”, we inherit its prototype.

Athlete
* sport Athlete °* name
constructor
call
Person null
Person
: prototype
e firstname
e fullname()
e |asthame .
* nickname

Warning!

function Person(first, last) {
this.firstname = first;
this.lastname = last;

}

Person.prototype.nickname="The Best";

let personl = new Person('Dorothea', 'Wierer');

let person2 = new Person('Valentino',6 'Rossi'). QUTPUT:

console.log (personl.nickname) ;

console.log(person2.nickname) ; The Best
Person.prototype.nickname="The Champion"; The Best
console.log(personl.nickname) ; The Champion
console.log(person2.nickname) ; .
personl .nickname="The Magic"; The Champlon
console.log(personl.nickname) ; The Magic
console.log(person2.nickname) ; The Champion
delete personl.nickname; :
The Champion

console.log (personl.nickname) ;
console.log (person2.nickname) ;

Property inheritance: demo

function A(p) {
this.al = p;
this.a2 = "due";
}
A.prototype.a3="tre";
A.prototype.ad="quattro";

let vl = new A("uno A");

let v2 = new B("uno B");

for (e in vl1) {
console.log("=> A "+e+"
"+vl[e])

}

for (e in v2) {

console.log ("B "+e+"
"tv2[e]);

function B(p) {
A.call(this,p);
this.bl="cinque";
}
B.prototype = Object.create (A.prototype);
Object.defineProperty (B.prototype,
'constructor'’,
{ value: B,
enumerable: false,
writable: true });
B.prototype.ad="sei";

=> A al uno_A from A.constructor param
=> A a2 due def. in A.constructor

== A a3 tre

- A a4 quattro in A.prototype

B al uno_B from B.constructor param
B a2 due def. in A.constructor
B bl cinquedef. in B.constructor

B a3 tre def. in A.prototype

Prototype-based inheritance - 5

For an in-depth discussion, see

https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Inheritance and the proto
type chain#Using prototypes in JavaScript

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Inheritance_and_the_prototype_chain

28

Q

Are there predefined objects in
JavaScript?

Introduzione alla programmazione web — Marco Ronchetti 2020 — Universita di Trento = &8

JavaScript has a number of predefined objects, e.g.:

var
var
var
var
var
var
var
var

x1
x2
x3
x4
x5
X6
x7
x8

new
new
new
new
new
new
new
new

Object () ;

String() ; //
Number () ; //
Boolean () ; //
Array () ; //
RegExp () ; //
Function(); //

Date() ;

do
do
do
do
do
do

not
not
not
not
not
not

use
use
use
use
use
use

it!
it!
it!
it!
it!
it!

Use []
Use /()/

The native prototypes should never be extended unless it is
for the sake of compatibility with newer JavaScript features.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects i

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects

Predefined objects

» Math is an object you never |
container for math functions.

* https://www.w3schools.com/js/

nstantiate — it's a

IS_math.asp

* https://www.w3schools.com/js/

|S_random.asp

e Date

* https://www.w3schools.com/|s/js_dates.asp

* RegExpr

* https://www.w3schools.com/js/|s _regexp.asp

https://www.w3schools.com/js/js math.asp

https://www.w3schools.com/js/js_math.asp
https://www.w3schools.com/js/js_random.asp
https://www.w3schools.com/js/js_dates.asp
https://www.w3schools.com/js/js_regexp.asp
https://www.w3schools.com/js/js_math.asp

31

So, there are no classes in
JavaScript?

Introduzione alla programmazione web — Marco Ronchetti 2020 — Universita di Trento

JavaScript classes, introduced in ECMAScript 2015, are
primarily syntactic sugar over JavaScript's existing
prototype-based inheritance. The class syntax does
not introduce a new object-oriented inheritance model to
JavaScript.

Unlike function declarations, and class declarations are not
hoisted.

class Person {

}
Classes

this.firstname =

this.lastname =

constructor (first, last) {

first;
last;

fullname () {

return this.firstname+"

"+this.lastname;

class Athlete extends Person {
constructor (first, last,
super (first,last) ;

this.sport=sport;

sport) {

let personl =
let person2 =

console.log(personl. fullname () +"
console.log(person2. fullname () +"

new Athlete('Dorothea’,
new Athlete('Valentino',6 'Rossi', 'Moto GP');

"+personl.sport) ;
"+person2.sport) ;

'Wierer', 'Biathlon') ;

Instance variables can ONLY be defined within methods.
"Regular"” instance variables have been proposed for future
versions, see: https://tc39.es/

Classes

Class variables (like the java static ones) can be defined,
but they cannot be called on instances.

Person.nickname="The Champion";

let personl = new Athlete('Dorothea', 'Wierer', 'Biathlon');

let person2 = new Athlete('Valentino',6 'Rossi', 'Moto GP');
console.log(personl. fullname()+" "+personl.sport+" "+Person.nickname) ;
console.log(person2.fullname()+" "+person2.sport+" "+person2.nickname) ;

Dorothea Wierer Biathlon The Champion
Valentino Rossi Moto GP undefined

Person.nickname="The Champion";

Person.prototype.nickname="The Best";

let personl = new Athlete('Dorothea', 'Wierer', 'Biathlon');

let person2 = new Athlete('Valentino',6 'Rossi', 'Moto GP');
console.log(personl. fullname()+" "+personl.sport+" "+Person.nickname) ;
console.log(person2.fullname()+" "+person2.sport+" "+person2.nickname) ;

Dorothea Wierer Biathlon The Champion

Valentino Rossi Moto GP The Best

https://tc39.es/

Class methods (like the java static ones) can be defined,
but they cannot be called on instances.

Classes

class Person {
constructor (first, last, birthYear) {
this.firstname = first;
this.lastname = last;
this.birthYear = birthYear;
}

static getAge(p) { // we cannot use this inside here!
let dt=new Date() ;
let thisyear=dt.getFullYear() ;
return thisyear-p.birthYear;

}
fullname () {

return this.firstname+" "+this.lastname; OUTPUT:

}
Dorothea Wierer 3@

}

let personl = new Person('Dorothea', 'Wierer',1990);
console.log(personl. fullname()+" "+Person.getAge (personl))

36

What are, exactly, arrays in
Javascript?

Introduzione alla programmazione web — Marco Ronchetti 2020 — Universita di Trento

Arrays

a=[];

a = new Array(); //discouraged

a[0]=3; a[l]="hello”; a[l0]=new Rectangle(2,2);
a.length() => 11;

a[“name”]="Jaric’; & a.name="Jaric";

Arrays are
SPARSE. INHOMOGENEOUS . ASSOCIATIVE

See https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global Objects/Array

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array

Array give you functions to (e.g.):
e add/remove an element at the end
 add/remove an element at the front

* add/remove an element by index
* remove a number of elements starting from an index
* find the index of an element

* make a copy of an array

See https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global Objects/Array

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array

See also a set of examples of common tasks performed on array
(such as e.g. find the maximum, sort):
* https://www.w3schools.com/js/js_array_sort.asp

* https://www.w3schools.com/js/js_array _iteration.asp

https://www.w3schools.com/js/js_array_sort.asp
https://www.w3schools.com/js/js_array_iteration.asp

40

How does the + operator work on
objects?

Introduzione alla programmazione web — Marco Ronchetti 2020 — Universita di Trento

We already know that the first rule with the + operator
IS to convert objects to primitive values.
The rule to execute the conversion is:

Check if the object:

* Is nota Date AND

* has a valueOf() method AND

* its valueOf() method returns a primitive value.

If yes, use the valueOf() method.
Else, use the toString() method.

Note: the array [1,"a",2] would be converted to "1,a,2".
An empty object {} is converted to "[object Object]"

