
Q
How are Objects defined in
JavaScript?

Introduzione alla programmazione web – Marco Ronchetti 2020 – Università di Trento1

Javascript objects

JavaScript is confusing for developers coming
from Java or C++, as it's all dynamic, all runtime,
and it has no classes at all.

It's all just instances (objects).

Even the "classes" we simulate (introduced in
ES5) are just a function object.

from developer.mozilla.org

Javascript objects as data structures

var person = {firstName:"Dorothea",
lastName:"Wierer", birthyear:1990};

Javascript objects are
collections of named values (properties)

Javascript objects can contain also methods

var person = {firstName:"Dorothea",
lastName:"Wierer", birthyear:1990,
fullName:function() {return this.firstName

+ " " + this.lastName;}};

Accessing properties

person.firstName

is equivalent to

person["firstName"];

and to

var x="firstName";
person[x];

Dynamic management of objects

You can dynamically add new properties to an existing
object by simply giving it a value.

var person = {firstName:"Dorothea",

lastName:"Wierer", birthyear:1990};
person.birthplace="Brunico;

You can also delete existing properties.

delete person.firstName;

Other ways to create objects

var person = {};
person.firstName="Dorothea";
person. lastName:"Wierer";
person. birthyear:1990;
person.fullName=function() {

return this.firstName + " " +
this.lastName;};

Hence, Javascript objects can also be created empty
and populated later.

"Object" is a misleading name!
If you come from a language like Java, where
objects are instances of classes, you will notice
that the "Object" notion of Javascript is quite
different!

For instance:
• you can not change the structure of a Java

object, but you can change the structure of
a JavaScript object!

• you cannot have objects without class in
Java, but you do in JavaScript!

Other ways to create object
var object1 = new Object();
Object.defineProperty(
object1, 'name', {
value: "AA",
writable: false

});
object1.name = 77;
document.write(object1.name);

OUTPUT:
AA

if writable:true: OUTPUT:
77

(but no error)

Objects constructors
Object constructors: templates for creating objects of a

certain type (somehow similar to the concept of "class").

function Rectangle(w, h) {
this.width=w;
this.height=h;
this.area=function(){return this.width*this.height}
}

a=new Rectangle(3,4); a.area() => 12 a.width => 3

Instance variables

method

The constructor function is JavaScript's version of a class.

Odd consequences…<script>
p = (n,s) => document.write(n+":"+s+"
");
function Rectangle(w, h) {

this.width=w;
this.height=h;
this.area=function(){

return this.width*this.height}
}
a=new Rectangle(2,3);
b=new Rectangle(2,3);
p(a.area(),b.area());
a.area=function(){return this.width*5}
p(a.area(),b.area());
</script>

OUTPUT:
6:6
10:6

Q
What are prototypes?

Introduzione alla programmazione web – Marco Ronchetti 2020 – Università di Trento11

Objects

The approach we have shown is not the most
efficient in terms of memory allocation, as for every

Rectangle we instantiate the area method!

It would be better to use the “prototype” feature.

Rectangle.prototype.area=function(){
return this.w*this.h

}

Prototype
The Prototype is a separate naming space, shared by all

instances of the same constructor/class
function Person(first, last) {

this.firstname = first;
this.lastname = last;

}
Person.prototype.fullname= function () {

return this.firstname+" "+this.lastname
};

Person.prototype.nickname="The Best";
let person1 = new Person('Dorothea', 'Wierer');
let person2 = new Person('Valentino','Rossi');
console.log(person1.nickname);
console.log(person2.nickname);
Person.prototype.nickname="The Champion";
console.log(person1.nickname);
console.log(person2.nickname);

OUTPUT:
The Best
The Best
The Champion
The Champion

Prototype
The Object.create() method creates a new object, using an

existing object as the prototype of the newly created
object.

OUTPUT:
The Best
The Best
The Champion
The Champion

Q
How can I inspect objects?

Introduzione alla programmazione web – Marco Ronchetti 2020 – Università di Trento15

Inspecting objects
<script>f
x = new Rectangle(3,4);
for (e in x) { // loop over all properties
console.log(e+" "+x[e]);
}

name of the property value of the property

If you only want to consider properties attached to the object itself,
and not its prototypes,
use getOwnPropertyNames()
or perform a hasOwnProperty() check.

propertyIsEnumerable() can also be used.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/getOwnPropertyNames
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/hasOwnProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/propertyIsEnumerable

Using the console

Q
Can I have object inheritance in
JavaScript?

Introduzione alla programmazione web – Marco Ronchetti 2020 – Università di Trento18

Using an object as
prototype of another object

function Person() {
this.isHuman=false;
this.printIntroduction=function() {

document.write("My name is "+this.name+
". Am I human? "+this.isHuman);

}
}
pippo=new Person();
pippo.printIntroduction();

const me = Object.create(pippo);
// "name" is a property set on "me",
// but not on "person"
me.name = 'Matthew';
// inherited properties can be overwritten
me.isHuman = true;
me.printIntroduction();

My name is
undefined.
Am I human? false

My name is Matthew.
Am I human? true"

Prototype
Moreover, the Prototype is used for providing a sort of

inheritance.

function Athlete(first, last, sport) {
Person.call(this,first,last);
this.sport=sport;

}
Athlete.prototype = Object.create(Person.prototype);
Object.defineProperty(Athlete.prototype, 'constructor', {

value: Athlete,
enumerable: false,
writable: true });

Prototype-based inheritance - 1

function Person(first, last) {
this.firstname = first;
this.lastname = last;

}
Person.prototype.nickname="The Best";
Person.prototype.fullname= function () {

return this.firstname+" "+this.lastname};

so that it does not
appear in 'for in' loop

Prototype-based inheritance - 2

let person1 = new Athlete('Dorothea', 'Wierer','Biathlon');
let person2 = new Athlete('Valentino','Rossi','Moto GP');

console.log(person1.fullname()+" "+person1.sport+" "+person1.nickname);
console.log(person2.fullname()+" "+person2.sport+" "+person2.nickname);

Prototype-
based
inheritance
- 3

function Person(first, last) {

this.firstname = first;
this.lastname = last;

}
Person.prototype = Object.create(Object.prototype);
Object.defineProperty(Person.prototype, 'constructor', {

value: Person,

enumerable: false,
writable: true });

Person.prototype.nickname="The Best";
Person.prototype.fullname= function () {

return this.firstname+" "+this.lastname};

IMPLICIT

function Athlete(first, last, sport) {
Person.call(this,first,last);
this.sport=sport;

}
Athlete.prototype = Object.create(Person.prototype);
Object.defineProperty(Athlete.prototype, 'constructor', {

value: Athlete,
enumerable: false,
writable: true });

Prototype-based inheritance - 4

Athlete
• sport
• firstname
• lastname

Athlete
prototype

Person
• firstname
• lastname

Person
prototype

• fullname()
• nickname

Object
• name
• create()
• …

Object
prototype

• toString()
• …

null

constructor
call

In the constructor we define the instance variables of our instances.
In the prototype we define the methods, and the variables shared by all our instances.
By invoking the "superclass" constructor, we inherit its instance variables.
By associating or prototype to the "superclass", we inherit its prototype.

Warning!
function Person(first, last) {

this.firstname = first;
this.lastname = last;

}
Person.prototype.nickname="The Best";
let person1 = new Person('Dorothea', 'Wierer');
let person2 = new Person('Valentino','Rossi');
console.log(person1.nickname);
console.log(person2.nickname);
Person.prototype.nickname="The Champion";
console.log(person1.nickname);
console.log(person2.nickname);
person1.nickname="The Magic";
console.log(person1.nickname);
console.log(person2.nickname);
delete person1.nickname;
console.log(person1.nickname);
console.log(person2.nickname);

OUTPUT:
The Best
The Best
The Champion
The Champion
The Magic
The Champion
The Champion
The Champion

Property inheritance: demo
function B(p) {

A.call(this,p);
this.b1="cinque";

}
B.prototype = Object.create(A.prototype);
Object.defineProperty(B.prototype,

'constructor',
{ value: B,

enumerable: false,
writable: true });

B.prototype.a4="sei";

function A(p) {
this.a1 = p;
this.a2 = "due";

}

A.prototype.a3="tre";
A.prototype.a4="quattro";

in A.prototype

def. in A.prototype, overwrt in B.prototype
def. in A.prototype

from A.constructor param
def. in A.constructor

def. in A.constructor
from B.constructor param

def. in B.constructor

let v1 = new A("uno_A");
let v2 = new B("uno_B");
for (e in v1) {

console.log("=> A "+e+"
"+v1[e]);

}
for (e in v2) {

console.log("B "+e+"
"+v2[e]);

}

Prototype-based inheritance - 5

For an in-depth discussion, see

https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Inheritance_and_the_proto
type_chain#Using_prototypes_in_JavaScript

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Inheritance_and_the_prototype_chain

Q
Are there predefined objects in
JavaScript?

Introduzione alla programmazione web – Marco Ronchetti 2020 – Università di Trento28

Predefined objects
JavaScript has a number of predefined objects, e.g.:

The native prototypes should never be extended unless it is
for the sake of compatibility with newer JavaScript features.

var x1 = new Object();
var x2 = new String(); // do not use it!
var x3 = new Number(); // do not use it!
var x4 = new Boolean(); // do not use it!
var x5 = new Array(); // do not use it! Use []
var x6 = new RegExp(); // do not use it! Use /()/
var x7 = new Function(); // do not use it!
var x8 = new Date();

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects

Predefined objects
• Math is an object you never instantiate – it's a

container for math functions.
• https://www.w3schools.com/js/js_math.asp
• https://www.w3schools.com/js/js_random.asp

• Date
• https://www.w3schools.com/js/js_dates.asp

• RegExpr
• https://www.w3schools.com/js/js_regexp.asp

https://www.w3schools.com/js/js_math.asp

https://www.w3schools.com/js/js_math.asp
https://www.w3schools.com/js/js_random.asp
https://www.w3schools.com/js/js_dates.asp
https://www.w3schools.com/js/js_regexp.asp
https://www.w3schools.com/js/js_math.asp

Q
So, there are no classes in
JavaScript?

Introduzione alla programmazione web – Marco Ronchetti 2020 – Università di Trento31

Classes
JavaScript classes, introduced in ECMAScript 2015, are

primarily syntactic sugar over JavaScript's existing
prototype-based inheritance. The class syntax does
not introduce a new object-oriented inheritance model to
JavaScript.

Unlike function declarations, and class declarations are not
hoisted.

Classes

class Person {

constructor(first, last) {
this.firstname = first;
this.lastname = last;

}
fullname() {

return this.firstname+" "+this.lastname;

}
}

class Athlete extends Person {
constructor(first, last, sport) {

super(first,last);

this.sport=sport;
}

}

let person1 = new Athlete('Dorothea', 'Wierer','Biathlon');
let person2 = new Athlete('Valentino','Rossi','Moto GP');

console.log(person1.fullname()+" "+person1.sport);
console.log(person2.fullname()+" "+person2.sport);

Classes

Person.nickname="The Champion";
let person1 = new Athlete('Dorothea', 'Wierer','Biathlon');
let person2 = new Athlete('Valentino','Rossi','Moto GP');
console.log(person1.fullname()+" "+person1.sport+" "+Person.nickname);
console.log(person2.fullname()+" "+person2.sport+" "+person2.nickname);

Person.nickname="The Champion";

Person.prototype.nickname="The Best";
let person1 = new Athlete('Dorothea', 'Wierer','Biathlon');
let person2 = new Athlete('Valentino','Rossi','Moto GP');
console.log(person1.fullname()+" "+person1.sport+" "+Person.nickname);
console.log(person2.fullname()+" "+person2.sport+" "+person2.nickname);

Instance variables can ONLY be defined within methods.
"Regular" instance variables have been proposed for future
versions, see: https://tc39.es/

Class variables (like the java static ones) can be defined,
but they cannot be called on instances.

https://tc39.es/

class Person {
constructor(first, last, birthYear) {

this.firstname = first;

this.lastname = last;
this.birthYear = birthYear;

}
static getAge(p) { // we cannot use this inside here!

let dt=new Date();
let thisyear=dt.getFullYear();

return thisyear-p.birthYear;
}
fullname() {

return this.firstname+" "+this.lastname;
}

}

let person1 = new Person('Dorothea', 'Wierer',1990);
console.log(person1.fullname()+" "+Person.getAge(person1));

Classes Class methods (like the java static ones) can be defined,
but they cannot be called on instances.

OUTPUT:

Q
What are, exactly, arrays in
Javascript?

Introduzione alla programmazione web – Marco Ronchetti 2020 – Università di Trento36

Arrays
a=[];
a = new Array(); //discouraged
a[0]=3; a[1]=“hello”; a[10]=new Rectangle(2,2);
a.length() => 11;

a[“name”]=“Jaric”; ó a.name="Jaric";

Arrays are
SPARSE, INHOMOGENEOUS , ASSOCIATIVE

See https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global_Objects/Array

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array

Arrays
Array give you functions to (e.g.):
• add/remove an element at the end
• add/remove an element at the front
• add/remove an element by index
• remove a number of elements starting from an index
• find the index of an element
• make a copy of an array

See https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global_Objects/Array

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array

Arrays

See also a set of examples of common tasks performed on array
(such as e.g. find the maximum, sort):

• https://www.w3schools.com/js/js_array_sort.asp
• https://www.w3schools.com/js/js_array_iteration.asp

https://www.w3schools.com/js/js_array_sort.asp
https://www.w3schools.com/js/js_array_iteration.asp

Q
How does the + operator work on
objects?

Introduzione alla programmazione web – Marco Ronchetti 2020 – Università di Trento40

+ Operator with objects
We already know that the first rule with the + operator

is to convert objects to primitive values.
The rule to execute the conversion is:

Check if the object:
• is not a Date AND
• has a valueOf() method AND
• its valueOf() method returns a primitive value.

If yes, use the valueOf() method.

Else, use the toString() method.

Note: the array [1,"a",2] would be converted to "1,a,2".
An empty object {} is converted to "[object Object]"

