
Introduction to XML

XML: basic elements

Markup languages

a markup language is NOT a programming language. It is
§ a system for annotating a document (metadata)
in a way that is syntactically distinguishable from the text,

meaning:
when the document is processed for display, the markup

language is not shown, and is only used to format the text.

In most cases is human-readable.

Example of Markup Language

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<data>

<NETWORK>
<IP>172.150.1.101</IP>
<IP_LODESERVER>172.150.1.3</IP_LODESERVER>

</NETWORK>
<LECTURE id=“27”>

<COURSE_NAME>Web Programming</COURSE_NAME>
<LECTURE_NAME>Introduction to XML</LECTURE_NAME>
<TEACHER_NAME>Marco Ronchetti</TEACHER_NAME>
<TIME>5225.00</TIME>

</LECTURE>
</data>

Introduzione alla programmazione web – Marco Ronchetti 2020 – Università di Trento3

Types of Markup languages - 1
1) Presentational markup

used by traditional word-processing systems: binary codes
embedded within document text that produce the WYSIWYG
("what you see is what you get") effect.

Such markup is usually hidden from the human users, even
authors and editors.

Types of Markup languages - 2
2) Procedural markup
Markup is embedded in text which provides instructions for
programs to process the text, such as e.g. TeX, and PostScript.
The processor runs through the text from beginning to end,
following the instructions as encountered.
Text with such markup is often edited with the markup visible
and directly manipulated by the author.

PostScript example

Types of Markup languages - 3
3) Descriptive markup
Markup is specifically used to label parts of the document for
what they are, rather than how they should be processed: e.g.
LaTeX, HTML, and XML.
The objective is to decouple the structure of the document from
any particular treatment or rendition of it. Such markup is often
described as "semantic".
Descriptive markup (logical markup, conceptual markup,
semantic markup) encourages authors to write in a way that
describes the material conceptually, rather than visually.

Example: HTML

Introduzione alla programmazione web – Marco Ronchetti 2021 – Università di Trento7

What is SGML
SGML is an ISO standard (ISO 8879:1986) which provides a
formal notation for the definition of generalized markup
languages. SGML is not a language in itself. Rather, it is a
metalanguage that is used to define other languages.

The roots: SGML

An SGML document is really the combination of three parts. Let's
refer to the parts as files (but they don't have to be separate
physical files).

One file contains the content of the document (words, pictures,
etc.). This is the part that the author wants to expose to the
client.

A second file is the grammar (DTD – data type definition) that
defines the accepted syntax.

A third file is a stylesheet that establishes how the content that
conforms to the grammar is to be rendered on the output
device.

SGML: the three parts

What is XML?

eXtensible Markup Language, or XML for short, is a
new technology for web applications.

XML is a World Wide Web Consortium standard that lets you
create your own tags.

XML is not a single technology, but a group of related
technologies that continually adds new members

XML is a lingua-franca that
simplifies business-to-business transactions on the web.

Vendor independence
in the data-formatting context

"Other successful Internet technologies let people run
their systems without having to take into account

another company's own computer systems, notably:
TCP/IP for networking,
Java for programming,

Web browsers for content delivery.
XML fills the data formatting piece of the puzzle.“

"These technologies do not create dependencies. It
means you can build solutions that are completely
agnostic about the platforms and software that you

use.“
Phipps, IBM's chief XML and Java evangelist

pComputer people are the
world's worst at inventing
new jargon.

pXML people seem to be the
worst of the worst in this
regard.

(Dick Baldwin)

XML Jargon

DOM
SAX
JAXP
JDOM

XQL
XML-RPC

XSP

XML
DTD
XSL

XSLT

XML Schema
XPath
XLink

XPointer

Related stuff
SGML XHTML CSS

Semantic Web
RDF (Resource Description Framework), OWL,

Topic Maps
Web Services

SOAP, UDDI, WSDL, XML-RPC
Configuration files

XML applications

What is a tag?
A tag is a CASE SENSITIVE sequence of characters that

begins with < and ends with >
Every tag must be closed with an end tag, which begins with </

What is an element?
An element is a sequence of characters that begins with a start tag

and ends with an end tag and includes everything in between.

<chap number="1">Text for Chapter 1</chap>

What is the content?
The characters in between the tags (rendered in green in this
presentation) constitute the CONTENT.

XML: element, content, and attribute

See https://www.w3schools.com/xml/xml_elements.asp

https://www.w3schools.com/xml/xml_elements.asp

An element may include optional attributes
The start tag may contain optional attributes. In this example, a

single attribute provides the number value for the chapter.

<chap number="1">Text for Chapter 1</chap>
The characters rendered in blue in the above element constitute an

attribute.

XML: element, content, and attribute

See https://www.w3schools.com/xml/xml_attributes.asp

https://www.w3schools.com/xml/xml_attributes.asp

All XML documents must be well-formed
XML documents need not be valid, but all XML documents must be well-

formed.

(HTML documents are not required to be well-formed)

There are several requirements for an XML document to be well-formed.

Well formed documents

Caution: XML is case sensitive

Start and end tags are required
To be well-formed, all elements that can contain character data must have

both start and end tags.
(Empty elements have a different requirement: see later.)
For purposes of this explanation, let's just say that the content that we

discussed earlier comprises character data.

Elements must nest properly
If one element contains another element, the entire second element must

be defined inside the start and end tags of the first element.

Well formed documents

Dealing with empty elements
We can deal with empty elements by writing them in either of the following two

ways:

<book></book>
<book/>

You will recognize the first format as simply writing a start tag followed immediately
by an end tag with nothing in between.

The second format is preferable

Empty element can contain attributes
Note that an empty element can contain one or more attributes inside the start tag:

<book author=“eckel" price="$39.95" />

Well formed documents

No markup characters are allowed
For a document to be well-formed, it must not have some

characters (entities) in the text data: < > “ ‘ &.
If you need for your text to include the < character you can

represent it using < or < or < instead.

All attribute values must be in quotes (apostrophes or double
quotes).

You can surround the value with apostrophes (single quotes) if the
attribute value contains a double quote. An attribute value that is
surrounded by double quotes can contain apostrophes.

Well formed documents

An XML document must have a root tag.
An XML document is an information unit that can be seen in

two ways:
As a linear sequence of characters that contain characters

data and markup.
As an abstract data structure that is a tree of nodes.

XML: tree structure

<book>
<author>Dante</author>
<chapter id=1>

<text>Nel mezzo del cammin…<text>
</chapter>
<chapter id=2>

<text>… a riveder le stelle</text>
</chapter>

</book>

book

author chapter chapter

text text

Nel mezzo del cammin…

… a riveder le stelle

Dante

See https://www.w3schools.com/xml/xml_tree.asp

https://www.w3schools.com/xml/xml_tree.asp

You define them!

Provide a grammar to:
§ define tags
§ define rules for the tags

§ allowed attributes
§ containment rules

The grammar is defined in a
§ DTD file
§ XML-Schema file

or is NOT DEFINED AT ALL!

XML: Which tags can I use?

examples later

§ XML declaration (or "Prolog": optional, but if present MUST
be the first element)

<?xml version=‘1.0’ encoding=‘utf-8’>
§ Optional DTD declaration
§ Optional comments and Processing Instructions
§ The root element’s start tag
§ All other elements, comments and PIs
§ The root element closing tag

Logical structure of an XML document

See https://www.w3schools.com/xml/xml_syntax.asp

https://www.w3schools.com/xml/xml_syntax.asp

How do you avoid tag conflicts?

Since you can define your own tags, if you reuse XML files
from other authors you might find tag conflicts.

These can be avoided by declaring a namespace as an
attribute of the root element:

<xsl:stylesheet version =“1.0”
xmlns:xsl=“http://www.w3.org/1999/XSL/Transform”>

(more about namespaces in the next lectures)

XML: namespaces

A parser, in this context, is a software tool that preprocesses an XML
document in some fashion, handing the results over to an application
program.

The primary purpose of the parser is to do most of the hard work up front
and to provide the application program with the XML information in a
form that is easier to work with.

What is a parser?

Making sense of XML: the Parser

XML file

Parser Data
structure

Error if not well-formed

Making sense of XML:the Parser

XML file

Parser Data
structure

SAX API

Your program

§ Tree-based API
A tree-based API compiles an XML document into an internal tree structure.
This makes it possible for an application program to navigate the tree to
achieve its objective. The Document Object Model (DOM) working group at
the W3C developed a standard tree-based API for XML.

§ Event-based API
An event-based API reports parsing events (such as the start and end of
elements) to the application using callbacks. The application implements and
registers event handlers for the different events. Code in the event handlers is
designed to achieve the objective of the application. The process is similar to
creating and registering event listeners in the Event Model by Java and other
languages.

Tree-based vs Event-based API

Introduction to XML

DTD

A DTD is usually a file (or several files to be used together) which
contains a formal definition of a particular type of document. This
sets out what names can be used for elements, where they may
occur, and how they all fit together.

It's a formal language which lets processors automatically parse a
document and identify where every element comes and how they
relate to each other, so that stylesheets, navigators, browsers,
search engines, databases, printing routines, and other
applications can be used.

A DTD contain metadata relative to a collection of XML docs.

What is a DTD?

For a tutorial, see https://www.w3schools.com/xml/xml_dtd_intro.asp

https://www.w3schools.com/xml/xml_dtd_intro.asp

An XML document is valid if it conforms to an existing grammar in
every respect.

For example...
Unless the DTD allows an element with the name "color", an XML

document containing an element with that name is not valid
according to that DTD (but it might be valid according to some
other DTD).

An invalid XML document can be a perfectly good and useful XML
document.

A non well-formed document cannot be valid, and is not an XML
document

Valid documents

Validity is not a requirement of XML

Because XML does not require a DTD, in general, an XML processor
cannot require validation of the document.

Many very useful XML documents are not valid, simply because
they were not constructed according to an existing DTD.

To make a long story short,
validation against a DTD can often be very useful, but is not

required.

Valid documents

Constraing &ValidatingXML

XML file

DTD file

Validating
Parser

Validation

A DTD can be external or internal to a document.

<!DOCTYPE Report>
<!DOCTYPE Report SYSTEM “Report.dtd”>
<!DOCTYPE Report PUBLIC “Report.dtd”>

Where are the DTDs?

Internal DTD

External
DTD

URL

Broadly and publicly available

<!ELEMENT name content-model>
<!ELEMENT book (preface?,chapter+,index)>
<!ELEMENT preface(paragraph+)>
<!ELEMENT paragraph (#PCDATA)>

<!ELEMENT chapter (title,paragraph+,reference*)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT reference (#PCDATA|URL)>
<!ELEMENT URL (#PCDATA)>

<!ELEMENT index(number,title,page_number)>
<!ELEMENT number(#PCDATA)>
<!ELEMENT page_number(#PCDATA)>

DTD Markup: ELEMENT

? Zero or one
+ One or more
* Zero or more
, sequence
| or (not xor!)

<!ATTLIST element-name attribute-name type default>
<!ELEMENT Product (#PCDATA)>
<!ATTLIST Product

Name CDATA #IMPLIED
Rev CDATA #FIXED “1.0”
Code CDATA #REQUIRED
Pid ID #REQUIRED
Series IDREF
Status (InProduction|Obsolete)

“InProduction”
>

DTD Markup: ATTLIST

TYPES:
CDATA character data
ID Unique key
IDREF Foreign Key
(…|…) Enumeration

DEFAULT:
#IMPLIED optional, no default
#FIXED optional, default supplied.

If present must match default
#REQUIRED must be provided

The main problem of DTD’s...

They are not written in XML!

Solution:

Another XML-based standard: XML Schema

For more info see:
http://www.w3.org/XML/Schema

Navigate its data structure:
§ DOM, JDOM
§ JAXP
§ XPath
§ SAX

Query XML data:
§ XQuery

Transform XML data:
§ XSLT

Use XML for Single Page Web Applications
§ AJAX

Use XML in configuration files

What can I do with XML?

HTML implements some of the concepts derived from SGML but in effect
the DTD is hard-coded into the browser software.

Also a (base) Style Sheet is hard-coded into the browser (but can be
redefined via CSS – cascading style sheet)

Because each browser manufacturer has some flexibility in implementing
the intended style, the same document could look different when
rendered with two different browsers. This is a (wanted) shortcoming of
HTML.

HTML versus SGML

