
An e-commerce experience



tv 24 pollici



FILTRI LISTA



DETTAGLIO









Vedi anche: 
https://www.cybersecurity360.it/
soluzioni-
aziendali/autenticazione-a-due-
fattori-cose-come-e-perche-
usarla-per-google-facebook-
instagram-e-altri/

https://www.cybersecurity360.it/soluzioni-aziendali/autenticazione-a-due-fattori-cose-come-e-perche-usarla-per-google-facebook-instagram-e-altri/






Domande

Qual'è la struttura dati (di massima)?

Dove vengono tenuti i dati ?



Data structure
{Product} :

• name
• price
• category
• image
• short description
• long description

{Customer} :
• name
• address
• card

Cart :
{

• product-id
• quantity

}

Application level

Customer id

Session level



Domande

Come si passa dalla ricerca alla lista degli oggetti trovati in MVC?

Idem per gli altri passaggi:
• lista oggetti -> dettaglio oggetto
• costruzione visualizzatore carrello
• costruzione riepilogo ordine



E questo come si fa?



Q
What do we mean by "Aspect-
oriented programming?

Introduzione alla programmazione web – Marco Ronchetti 
2020 – Università di Trento 15



AOP

Aspect-oriented programming  (AOP) attempts to aid 
programmers in the separation of concerns,  specifically 
cross-cutting concerns, as an advance in  modularization.

Logging and authorization offer two examples of 
crosscutting  concerns:

a logging strategy necessarily affects every single logged 
part  of the system. Logging thereby crosscuts all logged 
classes and  methods.

Same is true for authorization.



Q
How can we use AOP with servlets?

17



Filters (javax.servlet.filter)

Classes that preprocess/postprocess request/response

A filter is an object that performs filtering tasks on either the
• request to a resource (a servlet or static content), 
• the response from a resource.

Filters perform filtering in the doFilter method. Every Filter has 
access to a  FilterConfig object from which it can obtain its 
initialization parameters, a reference to the ServletContext 
which it can use, for example, to load  resources needed for 
filtering tasks.

They provide the ability to encapsulate recurring tasks in reusable 
units.



Filters (javax.servlet.filter)

Filters are configured:
• in the deployment descriptor of a web application
• via annotation (See 

https://docs.oracle.com/javaee/7/api/javax/servlet/annotation/WebFilter.html)

https://docs.oracle.com/javaee/7/api/javax/servlet/annotation/WebFilter.html


Filter role

A servlet filter can intercept requests both for servlets, JSP's, HTML files 
or other static content



Filters
Filters can perform many different types of functions:

* Authentication -> Blocking requests based on user identity
* Logging and auditing -> Tracking users of a web application
* Image conversion -> Scaling maps, and so on.
* Data compression ->Making downloads smaller.
* Localization -> Targeting the request and response to a particular  
locale.
* XSL/T -> transformations of XML content-Targeting web  
application responses to more that one type of client.

These are just a few of the applications of filters. There are many  
more, such as encryption, tokenizing, triggering resource access  
events, mime-type chaining, and caching.



Filters
The filtering API is defined by the Filter, FilterChain, and 
FilterConfig interfaces in the javax.servlet package. You define a 
filter by  implementing the Filter interface.

The most important method in this interface is doFilter, which is  
passed request, response, and filter chain objects. This method can  
perform the following actions:

1. Examine the request headers.
2. Customize the request object and response objects if needed
3. Invoke the next entity in the filter chain (configured in the  

WAR). The filter invokes the next entity by calling the doFilter  
method on the chain object (passing in the request and response it  
was called with, or the wrapped versions it may have created).



Filters methods (javax.servlet.filter)

• public void doFilter (ServletRequest, ServletResponse, FilterChain)
• This method is called by the container each time a request/response pair is 

passed through the chain due to a client request for a resource at the end of 
the chain.

• public void init(FilterConfig filterConfig)
• This method is called by the web container to indicate to a filter that it is being 

placed into service.

• public void destroy()
• This method is called by the web container to indicate to a filter that it is being 

taken out of service.



Filter example
import javax.servlet.*; import javax.servlet.http.*; 

import java.io.*;  
public class LoginFilter implements Filter {

protected FilterConfig filterConfig;
public void init(FilterConfig filterConfig) throws

ServletException{this.filterConfig =filterConfig; }
public void destroy() {this.filterConfig = null; }
public void doFilter(ServletRequest req, 

ServletResponse res,  FilterChain chain) throws 
java.io.IOException, ServletException {

HttpServletRequest hreq=(ServletRequest)req;
String username = hreq.getParameter("j_username");
if (isUserOk(username)) chain.doFilter(request,response);  
res.sendError(  

javax.servlet.http.HttpServletResponse.SC_UNAUTHORIZED);
}

}



Configuration
<filter id="Filter_1">

<filter-name>LoginFilter</filter-name>
<filter-class>LoginFilter</filter-class>
<description>Performs pre-login and post-login

operation</description>
</filter-id>

<filter-mapping>
<filter-name>LoginFilter</filter-name>
<url-pattern>/*</url-pattern>

</filter-mapping>



Filters Application Order
The order of filter-mapping elements in web.xml determines the 
order in which the web container applies the filter to the servlet. 

To reverse the order of the filter, you just need to reverse the 
filter-mapping elements in the web.xml file.



Filter sequencing example
<filter>
<filter-name>Uncompress</filter-name>
<filter-class>compressFilters.createUncompress</filter-
class>
</filter>
<filter>
<filter-name>Authenticate</filter-name>
<filter-class>authentication.createAuthenticate</filter-
class>
</filter>
<filter-mapping>
<filter-name>Uncompress</filter-name>
<url-pattern>/status/compressed/*</url-pattern>
</filter-mapping>
<filter-mapping>
<filter-name>Authenticate</filter-name>
<url-pattern>/status/compressed/*</url-pattern>
</filter-mapping>

Both Uncompress and Authenticate appear on the filter chain for servlets 
located at /status/compressed/*. 
The Uncompress filter precedes the Authenticate filter in the chain  because 
the Uncompress filter appears before the Authenticate filter in the web.xml
file.



Example: Filters and sessions
public void doFilter(ServletRequest req,  

ServletResponse res,  FilterChain chain) throws 
java.io.IOException, ServletException {

HttpServletRequest hreq=(HttpServletRequest) req;
HttpSession session = hreq.getSession(false);
if (null == session |

!(Boolean)session.getAttribute("auth")) {
if (isUserOk(hreq.getParameter("user")){
session=hreq.getSession(true);
session.setAttribute("auth",new Boolean(true)); 

} else res.sendError(  
javax.servlet.http.HttpServletResponse.SC_UNAU
THORIZED);

}
chain.doFilter(request, response);

}
private boolean isUserOk(String name) {…}



Example: Filters and parameters
java.util.ArrayList userList=null;
public void init(FilterConfig fc) throws ServletException {
this.filterConfig = fc;
BufferedReader in;
userList = new java.util.ArrayList();
if ( fc != null ) {

try {
String filename = fc.getInitParameter("Users");
in = new BufferedReader( new FileReader(filename));

} catch ( FileNotFoundException fnfe) {  
writeErrorMessage(fnfe); return;

}
String userName;  
try {
while ( (userName = in.readLine()) != null )
userList.add(userName);

} catch (IOException ioe) {writeErrorMessage(ioe);return;}
}

}
public void destroy() { this.filterConfig = null; userList = null;}



Filters and parameters

<filter id="Filter_1">
<filter-name>LoginFilter</filter-name>
<filter-class>LoginFilter</filter-class>
<description>Performs pre-login and post-login

operation</description>
<init-param>
<param-name>Users</param-name>
<param-value>c:\mydir\Users.lst</param-value>

</init-param>
</filter>



Further examples

http://www.oracle.com/technetwork/java/filters-137243.html

https://www.tutorialspoint.com/servlets/servlets-writing-filters.htm

http://www.oracle.com/technetwork/java/filters-137243.html
https://www.tutorialspoint.com/servlets/servlets-writing-filters.htm

